Answer:
0.00840
Explanation:
The computation of the mole fraction is as follow:
As we know that
Molar mass = Number of grams ÷ number of moles
Or
number of moles = Number of grams ÷ molar mass
Given that
Number of moles of CaI2 = 0.400
And, Molar mass of water = 18.0 g/mol
Now Number of moles of water is
= 850.0 g ÷ 18.0 g/mol
= 47.22 mol
And, Total number of moles is
= 0.400 + 47.22
= 47.62
So, Molar fraction of CaI2 is
= 0.400 ÷ 47.62
= 0.00840
a. 301 cg
b. 6.2 km
Explanation:
a. knowing that 1 gram (g) is equal to 100 centigrams (cg) we devise the following reasoning:
if 1 g is equal to 100 cg
then 3.01 g are equal to X cg
X = (3.01 × 100) / 1 = 301 cg
b. knowing that 1 kilometer (km) is equal to 1000 meters (m) we devise the following reasoning:
if 1 km is equal to 1000 m
then Y km are equal to 6200 m
Y = (6200 × 1) / 1000 = 6.2 km
Learn more about:
converting units of measurement
brainly.com/question/11300981
#learnwithBrainly
<u>Answer:</u> The freezing point of solution is -0.454°C
<u>Explanation:</u>
Depression in freezing point is defined as the difference in the freezing point of pure solution and freezing point of solution.
The equation used to calculate depression in freezing point follows:

To calculate the depression in freezing point, we use the equation:

Or,

where,
Freezing point of pure solution = 0°C
i = Vant hoff factor = 2
= molal freezing point elevation constant = 1.86°C/m
= Given mass of solute (KCl) = 5.0 g
= Molar mass of solute (KCl) = 74.55 g/mol
= Mass of solvent (water) = 550.0 g
Putting values in above equation, we get:

Hence, the freezing point of solution is -0.454°C
C most likely sorry if I’m wrong
0.843 moles would be the answer