1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrews [41]
3 years ago
8

Enough of a monoprotic acid is dissolved in water to produce a 1.35 M solution. The pH of the resulting solution is 2.93. Calcul

ate the Ka for the acid.
Chemistry
1 answer:
Ede4ka [16]3 years ago
6 0
The acid dissociation constant is defined as Ka = [H+][A-]/[HA] where [H+], [A-] and [HA] are the concentrations of protons, conjugate base, and acid in solution respectively. Assuming this is a weak acid as the pH is quite high for a 1.35 M solution, we can assume that the change in [HA] is negligible and therefore [HA] = 1.35 M.
To calculate [H+] we can use the relationship pH = -log[H+], rearranging to give: [H+] = 10^(-pH) = 10^(-2.93) = 1.17 x 10^(-3).
Since the acid is relatively concentrated we can assume therefore that       [H+] = [A-] as for each proton dissociated, a conjugate base is formed.
Therefore, we can calculate Ka as:
Ka = [H+]^2/[HA] = (1.17 x 10^-3 M)^2/1.35 = 1.01 x 10^-6 M
You might be interested in
Fill in the blanks and balance with the correct coefficient​
MrRissso [65]

\huge\mathrm{  \underline{Answer}}࿐

The Balanced equation will be :

\mathrm{ \boxed2Fe +  \boxed3Cl_2  \rightarrow  \boxed2FeCl_3}

The Coefficients are :

  • Fe - 2

  • Cl_2 - 3

  • FeCl_3 - 2

_____________________________

\mathrm{ \#TeeNForeveR}

4 0
2 years ago
Calculate the enthalpy for this reaction: 2C(s) + H2(g) ---> C2H2(g) ΔH° = ??? kJ Given the following thermochemical equation
nordsb [41]

Answer:

The enthalpy for given reaction is 232 kilo Joules.

Explanation:

C_2H_2(g) + \frac{5}{2}O_2(g)\rightarrow 2CO_2(g) + H_2O(l), \Delta H^o_{1} = -1,123 kJ...[1]

C(s) + O_2(g)\rightarrow CO2(g), \Delta H^o_{2} = -340 kJ..[2]

H_2(g) + \frac{1}{2}O_2(g)\rightarrow H_2O(l) ,\Delta H^o_{3} = -211 kJ..[3]

2C(s) + H_2(g)\rightarrow C_2H_2(g),\Delta H^o_{4} =?..[4]

2 × [2] + [3] - [1] ( Using Hess's law)

\Delta H^o_{4}=2\times \Delta H^o_{2}+\Delta H^o_{3} - \Delta H^o_{1}

\Delta H^o_{4}=2\times (-340 kJ) + (-211 kJ) - (-1,123 kJ)

\Delta H^o_{4}=232 kJ

The enthalpy for given reaction is 232 kilo Joules.

5 0
2 years ago
How many grams of sodium hydroxide are needed to make 500mLs of a 0.125M NaOH solution?
zubka84 [21]
Hope this helps you.

8 0
3 years ago
Consider an ideal gas enclosed in a 1.00 L container at an internal pressure of 14.0 atm. Calculate the work, w , if the gas exp
Vaselesa [24]

Answer:ryhrthyhytnthnthnthnthntnt

Explanation:

6 0
3 years ago
After he conducted cathode ray tube experiments proving the existence of negatively charged particles we now call electrons, Tho
Lina20 [59]

Answer:

Answer is explained below;

Explanation:

In 1904, after the discovery of the electron, the English physicist Sir J.J. Thomson proposed the plum pudding model of an atom. In this model, the atom had a positively-charged space with negatively charged electrons embedded inside it i.e., like a pudding (positively charged space) with plums (electrons) inside.

In 1911, another physicist Ernest Rutherford proposed another model known as the Rutherford model or planetary model of the atom that describes the structure of atoms. In this model, the small and dense atom has a positively charged core called the nucleus. Also, he proposed that just like the planets revolving around the Sun, the negatively charged electrons are moving around the nucleus.

By conducting a gold foil experiment, Rutherford disproved Thomson's model. In this experiment, positively charged alpha particles emitted from a radioactive source enclosed within a protective lead were used which was then focused into a narrow beam. It was then passed through a slit in front of which a thin section of gold foil was placed. A fluorescent screen (coated with zinc sulfide) was also placed in front of the slit to detect alpha particles which on striking the fluorescent screen would produce scintillation (a burst of light) which was visible through a microscope attached to the back of the screen.

He observed that most of the alpha particles passed straight through the gold foil without any resistance and this implied that atoms contain a large amount of open space. The slight deflection of some of the alpha particles, the large-angle scattering of other alpha particles and even the bouncing back of a very few alpha particles toward the source suggested their interactions with other positively charged particles inside the atom.

So, he concluded that only a dense and positively charged particle such as the nucleus would be responsible for such strong repulsion. Also, the negatively charged electrons electrically balanced the positive nuclear charge and they moved around the nucleus in circular orbits. Between the electrons and nucleus, there was an electrostatic force of attraction just like the gravitational force of attraction between the sun and the revolving planets.

Later, the Rutherford model was replaced by the Bohr atomic model.

6 0
3 years ago
Other questions:
  • What products are formed when an aldehyde reacts with a base?
    12·1 answer
  • Provide three different types of examples of how minerals form on earth
    5·1 answer
  • the two amino acids, glycine and alanine, can form two different dipeptides. Draw one of the possible dipeptides as it would app
    9·1 answer
  • Using the following chemical reaction, perform the theoretical stoi
    14·1 answer
  • Consider the balanced equation for the following reaction:
    13·1 answer
  • An average reaction rate is calculated as the change in the concentration of reactants or products over a period of time in the
    9·1 answer
  • A family takes a summer vacation to Florida. They drive for 8 hours before stopping at a hotel for the night. They
    11·1 answer
  • One glass of water is 85 degrees F and another is 40 degrees F. When an Alka Seltzer tablet is dropped into each glass, at the s
    7·1 answer
  • Which of the following describes how further studies supported the work done by Ernest Rutherford?
    9·1 answer
  • What happens when a solid is dissolved into a liquid?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!