Answer:
See explanation
Explanation:
The essence of chemical bonding is in order to attain minimum energy. The minimum energy state is the most stable state of a chemical system.
As the distance of separation between atoms decreases, the potential energy of the system decreases accordingly.
An optimum distance is reached when the two atoms attain the lowest potential energy. This is designated as the bond distance of the two atoms.
Hence two atoms have lower potential energy when bonded than when separated at large distance.
Ummm i actually dont know lol i swear i knew im sorry man or women ( im not trying to assume your gender
Answer:
Explanation:
Moles of
= 1 mole
Moles of
= 1 mole
Volume of solution = 1 L
Initial concentration of
= 1 M
Initial concentration of
= 1 M
The given balanced equilibrium reaction is,

Initial conc. 1 M 0M 1 M
At eqm. conc. (1-2x) M (2x) M (1+x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[NO]^2[Cl_2]}{[NOCl]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO%5D%5E2%5BCl_2%5D%7D%7B%5BNOCl%5D%5E2%7D)
The
= 
Now put all the given values in this expression, we get :

By solving the term 'x', we get :

Concentration of
at equilibrium= (2x) M =
by putting to much current through it ?