You need to observe the car at two different times.
-- The first time:
You write down the car's speed, and the direction it's pointing.
-- The second time:
You write down the car's speed and the direction it's pointing, again.
You take the data back to your lab to analyze it.
-- You compare the first and second speed. If they're different,
then the car had acceleration during the time between the two
observations.
-- You compare the first and second direction. If those are different,
even if the speeds are the same, then the car had acceleration during
the time between the two observations.
(Remember, "acceleration" doesn't mean "speeding up".
It means any change in speed or direction of motion.)
Answer:
r₂ = 0.316 m
Explanation:
The sound level is expressed in decibels, therefore let's find the intensity for the new location
β = 10 log
let's write this expression for our case
β₁ = 10 log \frac{I_1}{I_o}
β₂ = 10 log \frac{I_2}{I_o}
β₂ -β₁ = 10 (
)
β₂ - β₁ = 10
log \frac{I_2}{I_1} =
= 3
= 10³
I₂ = 10³ I₁
having the relationship between the intensities, we can use the definition of intensity which is the power per unit area
I = P / A
P = I A
the area is of a sphere
A = 4π r²
the power of the sound does not change, so we can write it for the two points
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
we substitute the ratio of intensities
I₁ r₁² = (10³ I₁ ) r₂²
r₁² = 10³ r₂²
r₂ = r₁ / √10³
we calculate
r₂ =
r₂ = 0.316 m
Answer:
The 2 light bulbs can be connected in parallel to each other to avoid disconnection when one bulb burns out.
Explanation:
The parallel connection is required not series. A parallel connection is the connection of electronic components (e.g bulbs, LED, resistors, capacitors etc) in such a way that the same voltage is supplied across the ends of the components. While in a series connection, the components are connected to each other end-to-end.
As regard the question, parallel connection ensures that the brightness any of the bulbs is not affected with respect to the other bulbs. And other bulbs continue to function when any burns out. The 2 light bulbs should be connected in parallel to the baterry to avoid disconnection of all the bulbs.
Answer:

Explanation:
It is given that,
Mass of Albertine, m = 60 kg
It can be assumed, the spring constant of the spring, k = 95 N/m
Compression in the spring, x = 5 m
A glass sits 19.8 m from her outstretched foot, h = 19.8 m
When she just reach the glass without knocking it over, a force of friction will also act on it. Using the conservation of energy for the spring mass system such that,




So, the coefficient of kinetic friction between the chair and the waxed floor is 0.101. Hence, this is the required solution.