1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivenika [448]
3 years ago
11

If the specific surface energy for aluminum oxide is 0.90 J/m2 and its modulus of elasticity is (393 GPa), compute the critical

stress required for the propagation of an internal crack of length 0.6 mm. ___ MPa
Engineering
1 answer:
vampirchik [111]3 years ago
6 0

Answer:

critical stress required for the propagation is 27.396615 ×10^{6} N/m²

Explanation:

given data

specific surface energy = 0.90 J/m²

modulus of elasticity E = 393 GPa = 393 ×10^{9} N/m²

internal crack length = 0.6 mm

to find out

critical stress required for the propagation

solution

we will apply here critical stress formula for propagation of internal crack

( σc ) = \sqrt{\frac{2E\gamma s}{\pi a}}    .....................1

here E is modulus of elasticity and γs is specific surface energy and a is half length of crack i.e 0.3 mm  = 0.3 ×10^{-3} m

so now put value in equation 1 we get

( σc ) = \sqrt{\frac{2E\gamma s}{\pi a}}

( σc ) = \sqrt{\frac{2*393*10^9*0.90}{\pi 0.3*10^{-3}}}

( σc ) = 27.396615 ×10^{6} N/m²

so critical stress required for the propagation is 27.396615 ×10^{6} N/m²

You might be interested in
As the impurity concentration in solid solution of a metal is increased, the tensile strength:________.a) decreasesb) increasesc
valkas [14]

Answer:

Increases

Explanation:

By inhibiting the motion of dislocations by impurities in a solid solutions, is a strengthening mechanism. In solid solutions it is atomic level strengthening resulting from resistance to dislocation motion. Hence, the strength of the alloys can differ with respect to the precipitate's property. Example, the precipitate is stronger (ability to an obstacle to the dislocation motion) than the matrix and it shows an improvement of strength.

5 0
3 years ago
There are three options for heating a particular house: a. Gas: $1.33/therm where 1 therm=105,500 kJ b. Electric Resistance: $0.
sergejj [24]

Answer:

Option ‘a’ is the cheapest for this house.

Explanation:

Cheapest method of heating must have least cost per kj of energy. So, convert all the energy in the same unit (say kj) and take select the cheapest method to heat the house.

Given:

Three methods are given to heat a particular house are as follows:

Method (a)

Through Gas, this gives energy of amount $1.33/therm.

Method (b)

Through electric resistance, this gives energy of amount $0.12/KWh.

Method (c)

Through oil, this gives energy of amount $2.30/gallon.

Calculation:

Step1

Change therm to kj in method ‘a’ as follows:

C_{1}=\frac{\$ 1.33}{therm}\times(\frac{1therm}{105500kj})

C_{1}=1.2606\times10^{-5} $/kj.

Step2

Change kWh to kj in method ‘b’ as follows:

C_{2}=\frac{\$ 0.12}{kWh}\times(\frac{1 kWh }{3600kj})

C_{2}=3.334\times10^{-5} $/kj.

Step3

Change kWh to kj in method ‘c’ as follows:

C_{3}=\frac{\$ 2.30}{gallon}\times(\frac{1 gallon }{138500kj})

C_{3}=1.66\times10^{-5} $/kj.

Thus, the method ‘a’ has least cost as compare to method b and c.

So, option ‘a’ is the cheapest for this house.

 

5 0
2 years ago
For a steel alloy it has been determined that a carburizing heat treatment of 15 h duration will raise the carbon concentration
Free_Kalibri [48]

Answer:

135 hour

Explanation:

It is given that a carburizing heat treatment of 15 hour will raise the carbon concentration by 0.35 wt% at a point of 2 mm from the surface.

We have to find the time necessary to achieve the same concentration at a 6 mm position.

we know that \frac{x_1^2}{Dt}=constant where x is distance and t is time .As the temperature is constant so D will be also constant

So \frac{x_1^2}{t}=constant

then \frac{x_1^2}{t_1}=\frac{x_2^2}{t_2} we have given x_1=2 mm\ ,t_1=15 hour\ ,x_2=6\ mm and we have to find t_2 putting all these value in equation

\frac{2^2}{15}=\frac{6^2}{t_2}

so t_2=135\ hour

5 0
3 years ago
A thick steel slab ( 7800 kg/m3 , c 480 J/kg K, k 50 W/m K) is initially at 300 C and is cooled by water jets impinging on one o
Nutka1998 [239]

Answer:

1791 secs  ≈ 29.85 minutes

Explanation:

( Initial temperature of slab )  T1 = 300° C

temperature of water ( Ts ) = 25°C

T2 ( final temp of slab ) = 50°C

distance between slab and water jet = 25 mm

<u>Determine how long it will take to reach T2</u>

First calculate the thermal diffusivity

∝  = 50 / ( 7800 * 480 ) = 1.34 * 10^-5 m^2/s

<u>next express Temp as a function of time </u>

T( 25 mm , t ) = 50°C

next calculate the time required for the slab to reach 50°C at a distance of 25mm

attached below is the remaining part of the detailed solution

5 0
3 years ago
Explain the prosses of welding
klio [65]

Answer:

Welding is a fabrication process whereby two or more parts are fused together by means of heat, pressure or both forming a join as the parts cool. Welding is usually used on metals and thermoplastics but can also be used on wood.

Explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • A compression ignition engine when tested gave an indicator card having area 3250mm^2 and length 73mm. The calibration factor wa
    10·1 answer
  • A 100 kmol/h stream that is 97 mole% carbon tetrachloride (CCL) and 3% carbon disulfide (CS2) is to be recovered from the bottom
    7·1 answer
  • Which if of the following is not a part of a program block
    9·1 answer
  • “We’re late for homeroom,” said Bonnie, surprised to hear herself say “we.” “EARL is a tool, Bonnie’s mother kept reminding her,
    8·2 answers
  • An undeformed specimen of some alloy has an average grain diameter of 0.050 mm. You are asked to reduce its average grain diamet
    11·1 answer
  • Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 21 m3/min and exits at 12 b
    11·1 answer
  • What kinds of problems or projects would a mechanical engineer work on?
    11·1 answer
  • You need to lower your lift onto the mechanical load-holding devices to provide structural support before working under the lift
    12·1 answer
  • Technician A says that if fuel pump pressure is correct, fuel pump volume will be correct as well. Technician B says that a fuel
    15·1 answer
  • Do better then me......................................
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!