<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
Radiation is s very powerful substance and can cause major health problems do the health care professionals limit the use to help not create sickness
Answer:
C) an increase in rate of reaction because reactant molecules collide with greater energy
Explanation:
Temperature is one of the factors that affect the rate of a reaction. The rate of a reaction increases with an increase in temperature and vice versa. When the temperature of a reaction increases, the kinetic energy of the reactant molecules increases causing them to react at a faster rate.
The reactant molecules respond to an increase in temperature by colliding at a faster rate due to an increased kinetic energy between the reactant molecules.