Answer:
H2
Explanation:
Critical temperature is the temperature above which gas cannot be liquefied, regardless of the pressure applied.
Critical temperature directly depends on the force of attraction between atoms, it means stronger the force of higher will be the critical temperature. So, from the given options H2 should have the highest critical temperature because of high attractive forces due to H bonding.
Hence, the correct option is H2.
Answer:
C
Explanation:
Only this choice is applicable and correct.
The inter-molecular forces of attraction between the molecules must have been broken (overcome) before the molecules can gain an increase in the kinetic energies between them.
The mass of nitrogen gas that participated in the chemical reaction is 1.54g
HOW TO CALCULATE MASS OF AN ELEMENT:
- Mass of a substance can be calculated by multiplying the number of moles in mol of the substance by its molecular mass in g/mol. That is;
- mass (M) = molar mass (MM) × number of moles (n)
According to this question, a chemist determines by measurements that 0.0550 moles of nitrogen gas (N2) participate in a chemical reaction.
- The molecular mass of nitrogen gas (N2) = 14.01(2)
= 28.02g/mol
Hence, the mass of the nitrogen gas that participated in the chemical reaction is calculated as follows:
- Mass (g) = 0.0550 mol × 28.02 g/mol
Therefore, the mass of nitrogen gas that participated in the chemical reaction is 1.54g
Learn more: brainly.com/question/18269198