Explanation:
its hard to explain unless we know what the question fully asks..
Answer:
Here's what I get
Explanation:
You may have done a Williamson synthesis of guaifenesin by reacting guaiacol with 3-chloropropane-1,2-diol.
A. Mechanism
Step 1
NaOH converts guaiacol into a phenoxide ion.
Step 2
The phenoxide acts as the nucleophile in an SN2 reaction to displace the Cl from the alkyl halide.
B. Improve the yield
You probably carried out the reaction in ethanol solution — a polar protic solvent.
You might try doing the reaction in a polar aprotic solvent— perhaps DMSO.
A polar aprotic solvent does not hydrogen bond to nucleophiles, so they become stronger.
C. Another method of ether synthesis —dehydration of alcohols
Sulfuric acid catalyzes the conversion of primary alcohols to ethers.
This is also a nucleophilic displacement reaction.
Protonation of the OH converts it into a better leaving group.
Attack by a second molecule of alcohol forms the protonated ether.
A molecule of water then removes the proton.
KAnswer:
See explanation
Explanation:
It is more common to use H2SO4 for dehydration reaction rather than HCl because HCl contains a good nucleophile,the chloride ion.
Owing to the presence of the chloride ion, a substitution reaction involving the chloride ion may also proceed also thereby affecting the elimination reaction.
Also, concentrated H2SO4 is a very good drying agent thus, as long as it is used, the alcohol substrate is completely dehydrated to yield the alkene.
Note that HCl is not a dehydrating agent.