Explanation:
We'll call the radius r and the diameter d:
We also assume that the riders are at a distance r = d/2 = 7m from the center of the wheel.
The period of the wheel is 24s. The tangent velocity of the wheel (and the riders) will be: (2pi/T)*r = 0.8 m/s (circa).
It means that in 3 minutes (180 seconds) they'll run 0.8 m/s * 180s = 144m.
Hopefully I understood the question. If yes, that's the answer.
(1) The image of an object placed further from the lens than the focal point will be upside down and smaller than the object.
(2) When light rays reflect, they bounce back.
(3) Images formed by a concave lens will look magnified.
(4) When light rays enter a different medium, they bend.
<h3>
1.0 Object placed further from the lens than the focal point</h3>
The image of an object placed further from the lens than the focal point will be diminished and inverted.
Thus, the correct answer will be "upside down and smaller than the object".
<h3>2.0 What is reflection of light?</h3>
The ability of light to bounce back when it strike a hard surface is known as refection.
<h3>3.0 Image formed by concave lens</h3>
A concave lens is diverging lens is usually virtual, erect and magnified.
<h3>4.0 Refraction of light</h3>
The change in speed of light when it travels from medium to another medium is known as refraction. Refraction is also, the ability of light to bend around obstacles.
Learn more about reflection and refraction of light here: brainly.com/question/1191238
Answer:
3.82 ms
Explanation:
The period of a wave is equal to the reciprocal of the frequency:

where f is the frequency.
In this problem, f = 262 Hz, so the period if this sound wave is
