Answer:
Explanation: The Earth's surface is constantly changing through forces in nature. The daily processes of precipitation, wind and land movement result in changes to landforms over a long period of time. Driving forces include erosion, volcanoes and earthquakes. People also contribute to changes in the appearance of land.
Complete Question:
In the same configuration of the previous problem 3, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a = 13.5 cm. Each wire carries 7.50 A, and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3.
a) Draw a diagram in a (x,y) plane of the four wires with wire 4 perpendicular to the origin. Indicate the current's directions.
b) Draw a diagram of all magnetic fields produced at the position of wire 3 by the other three currents.
c) Draw a diagram of all magnetic forces produced at the position of wire 3 by the other three currents.
d) What are magnitude and direction of the net magnetic force per meter of wire length on wire 3?
Answer:
force, 1.318 ₓ 10⁻⁴
direction, 18.435°
Explanation:
The attached file gives a breakdown step by step solution to the questions
Answer:

Explanation:
First ship starts at Noon with speed 20 Knots towards West
now we know that 2nd ship starts at 6 PM with speed 15 Knots towards North West
so after time "t" of 2nd ship motion the two ships positions are given as


now we can find the distance between two ships as

now we have


now we will differentiate it with respect to time

here we know that

so we have

now we have


One can simply find the frictional force acting on an object using this equation:
(Ffrict<span> = μ•F</span>norm<span>)
</span>
The process of determining the value of the individual forces acting upon an object involve an application of Newton's second law (Fnet=m•a) and an application of the meaning of the net force. If mass (m) and acceleration (a) are known, then the net force (Fnet) can be determined by use of the equation.
<span>Fnet = m • a</span>
If the numerical value for the net force and the direction of the net force is known, then the value of all individual forces can be determined.
Answer:
south
im not sure with this answer