Answer:
Water would not be able to transport nutrients -‐-‐ in plants, or in our bodies -‐-‐ nor to dissolve and transport waste products out of our bodies. ... Cohesiveness, adhesiveness, and surface tension: would decrease because without the +/-‐ polarity, water would not form hydrogen bonds between H20 molecules.
Answer:
An acid dissociation constant, K a, (also known as acidity constant, or acid-ionization constant) is a quantitative measure of the strength of an acid in solution. It is the equilibrium constant for a chemical reaction ↽ − − ⇀ − + + known as dissociation in the context of acid–base reactions.
Explanation:
Answer: last option, what came before the big bang?
Explanation:
The big bang theory states that the universe started as a dense nucleus of matter: a huge amount of matter concentrated in a tiny spot.
This is the conclusion of equations and evidences that prove that the universe has been and continuous to expand: since it has been expanding, there was a moment when it was as small and dense as it is possible.
So, the expansion is the result of violent explosion.
The time during which the expansion has been happening (this is how long ago the big bang occured) has been estimated thanks the the observation of the speed of recesion of the galaxies, but nothing can be told about what came before the bing bang occured.
Photosynthesis is commonly understood as converting light energy to chemical energy. So, C would be the correct answer.
The freezing point depression of the solution or pure substance that is added with the solvent is calculated through the equation,
ΔTf = Kfm
where ΔT is the freezing point depression, Kf is the constant for water given to be -1.86°C/m and m is the molality of the solution.
Molality is calculated through the equation,
m = number of moles solute/ kg of solvent
Calculation of molality is shown below.
m = (21.5 g C6H12O6)(1 mol/180 g) / (0.255 kg)
m = 0.468 molal
The freezing point depression is then,
ΔTf = (-1.86°C/m)(0.468 m) = -0.87°C
<em>Answer: -0.87°C</em>