<u>Answer:</u> The given sample of water is not safe for drinking.
<u>Explanation:</u>
We are given:
Concentration of fluorine in water recommended = 4.00 ppm
ppm is the amount of solute (in milligrams) present in kilogram of a solvent. It is also known as parts-per million.
To calculate the ppm of fluorine in water, we use the equation:

Both the masses are in grams.
We are given:
Mass of fluorine =
(Conversion factor: 1 g = 1000 mg)
Mass of water = 5.00 g
Putting values in above equation, we get:

As, the calculated concentration is greater than the recommended concentration. So, the given sample of water is not safe for drinking.
Hence, the given sample of water is not safe for drinking.
Answer:
16:1
Explanation:
Atoms of element X weigh 32 times more than atoms of element Y. We can write this in a symbolic way.
mX = 32 mY [1]
where,
- mX and mY are the masses of X and Y, respectively
A compound has the formula: XY₂, that is, in 1 molecule of XY₂ there is 1 atom of X and 2 atoms of Y. The ratio of the mass of X to the mass of Y in this compound equals:
mX/2 mY [2]
If we substitute [1] in [2], we get:
mX/2 mY = 32 mY/2 mY = 16 = 16:1
Answer:
Options for g Of A: 10, 20, or 30
Options for g of B: 10, 30, or 20
Explanation:
SORRY IF IM WRONG
Answer:
Experiment you will be able to watch a chemical reaction. In this experiment vinegar (a substance) and baking soda (a substance) will mix together. When mixed together the molecules of the two substances will re-arrange, or change, to make new substances.
Vinegar has acetic acid in it. The chemical name for baking soda is sodium bicarbonate. When you mix the two together you get sodium acetate and water. You also get carbon dioxide, which is a gas. The bag puffs up because carbon dioxide is a gas and takes up a lot of space. Eventually the bag isn't big enough to hold all that carbon dioxide gas so it explodes!
Explanation:
hope it helps ig! :\
Answer:
See explanation and image attached
Explanation:
Here attached are resonance forms of pyrrole and pyridine. The images were obtained from quora and researchgate respectively.
Now, we can see that in the resonance forms of pyrrole, the nitrogen atom in the heterocycle has a formal charge of +1. However, in the six membered pyridine hetrocycle, the nitrogen atom may have a formal charge of -1 or +1 as shown in the canonical structures attached. The structures in which nitrogen has a +1 formal charge in pyridine are comparable to structures obtained from pyrrole. These structures have less contribution to the structure of pyridine.