Answer:
a) Watch the attaccment
b) Ethyl bromide is more reactive than n-propyl bromid, and this more than neopentyl bromide. Ethyl bromide has less steric hindrance than the others, to SN2 reactions.
c) t-butyl bromide is more reactive than isopropyl bromide, and this more than ethyl bromide. t-butyl bromide structure stabilize the carbocation, better than the others.
Explanation:
Speed of SN2 reactions depends on steric hindrance, the less hindrance, the most reaction speed, meaning more reactivity. Then, those linear structures are more reactive to SN2 reactions.
In the other hand, speed of SN1 reactions depends on the stability of the carbocation formed. Structure with ramifications can stabilize better the carbocation, these structures are more reactive to SN1 reactions.
I believe the answer is salt. because it is a compound of two distinct elements that can be broken down without changing the properties of substance.
A pure substance is a substance that are made up of only one type of an atom or one type of a molecule. Pure substances may be further broken down into elements and compounds.
I believe the answer would be A. Electronegativity increases across a period.
Answer:
1.45 x 10⁻² g CO₂
Explanation:
To find the mass of carbon dioxide, you need to (1) convert grams CH₄ to moles CH₄ (via molar mass), then (2) convert moles CH₄ to moles CO₂ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles CO₂ to grams CO₂ (via molar mass). The final answer should have 3 sig figs to reflect the given value (5.30 x 10⁻³ g).
Molar Mass (CH₄): 12.011 g/mol + 4(1.008 g/mol)
Molar Mass (CH₄): 16.043 g/mol
Combustion of Methane:
1 CH₄ + 2 O₂ ---> 2 H₂O + 1 CO₂
Molar Mass (CO₂): 12.011 g/mol + 2(15.998 g/mol)
Molar Mass (CO₂): 44.007 g/mol
5.30 x 10⁻³ g CH₄ 1 mole 1 mole CO₂ 44.007 g
--------------------------- x ---------------- x --------------------- x ----------------- =
16.043 g 1 mole CH₄ 1 mole
= 0.0145 g CO₂
= 1.45 x 10⁻² g CO₂