Single-replacement reaction
<em>The statement that gives the relationship between energy needed in breaking a bond and the one that is released after breakin</em>g is
The amount of energy it takes to break a bond is always less than the amount of energy released when the bond is formed.
- Bond energy can be regarded as amount of energy that is required in breaking a particular bond.
- For a bond to be broken Energy will be added and when a bond is broken there will be release of energy
- Bond breaking can be regarded as endothermic process, it is regarded as endothermic because there is a lot of energy required to be absorbed.
- Where ever a bond is broken, there must be formation of another bond
- Bond forming on the other hand can be regarded as exothermic process, since there is a release of releases energy.
Therefore, more energy is required in breaking of bond compare to energy released after breaking of bond.
Learn more at : brainly.com/question/10777799?referrer=searchResults
Bleh bleh bleh bleh bleh bleh bleh bleh and bleh
False, in converting between units, it is never necessary to use more than one conversion factor.
This is a tricky question. All that matters are ratios of percentages, not percentages themselves. So no one should directly compare 27.2 with 42.9. We must and shall compare the ratios (27.2 to 72.8) and (42.9 to 57.1).
Take them both down to 1 to and see what happens.
Working out the formulas knowing atomic masses is a bit beside the point; this is how people first DISCOVERED the idea of atomic mass.
A
Carbon Oxygen
27.2g 72.8g (100-27.2)
Moles 27.2/12 72.8/16
2.27 4.55
Ratio 1 2
Do the same with the other