Answer:
Explanation:
side of the square loop, a = 7 cm
distance of the nearest side from long wire, r = 2 cm = 0.02 m
di/dt = 9 A/s
Integrate on both the sides

i = 9t
(a) The magnetic field due to the current carrying wire at a distance r is given by


(b)
Magnetic flux,





(c)
R = 3 ohm

magnitude of voltage is
e = 1.89 x 10^-7 V
induced current, i = e / R = (1.89 x 10^-7) / 3
i = 6.3 x 10^-8 A
Answer:
The centripetal force on body 2 is 8 times of the centripetal force in body 1.
Explanation:
Body 1 has a mass m, and its moving in a circle with a radius r at a speed v. The centripetal force acting on it is given by :

Body 2 has a mass 2m and its moving in a circle of radius 4r at a speed 4v. The centripetal force on body 2 is :

So, the centripetal force on body 2 is 8 times of the centripetal force in body 1.
F = m • a
What we know:
- Gravity: 9.8 m/s
- Force: 490 N
Equation derived:
m = F/a
m = 490/9.8
= 50 kg
Question:
A particle moving along the x-axis has a position given by x=(24t - 2.0t³)m, where t is measured in s. What is the magnitude of the acceleration of the particle at the instant when its velocity is zero
Answer:
24 m/s
Explanation:
Given:
x=(24t - 2.0t³)m
First find velocity function v(t):
v(t) = ẋ(t) = 24 - 2*3t²
v(t) = ẋ(t) = 24 - 6t²
Find the acceleration function a(t):
a(t) = Ẍ(t) = V(t) = -6*2t
a(t) = Ẍ(t) = V(t) = -12t
At acceleration = 0, take time as T in velocity function.
0 =v(T) = 24 - 6T²
Solve for T
Substitute -2 for t in acceleration function:
a(t) = a(T) = a(-2) = -12(-2) = 24 m/s
Acceleration = 24m/s
Answer:
if they move to their respective sides at the same time then they are moving at exactly the same velocity
so that means they have the same speed and velocity
Explanation:
Pls, mark me as brainliest. Pls be the first person to do so