Answer:
The power will remain the same for a particular load as we are not changing the load. so if we increase the voltage, the current will decrease to make the net power consumed by the load same as before. If we increase the current, the voltage will decrease for making the power same. The power will only change when we changes the load.
Explanation:
Answer:
T = 676 N
Explanation:
Given that: f = 65 Hz, L = 2.0 m, and ρ = 5.0 g
= 0.005 kg
A stationary wave that is set up in the string has a frequency of;
f = 

⇒ T = 4
M
Where: t is the tension in the wire, L is the length of the wire, f is the frequency of the waves produced by the wire and M is the mass per unit length of the wire.
But M = L × ρ = (2 × 0.005) = 0.01 kg/m
T = 4 ×
×
× 0.01
= 4 × 4 ×4225 × 0.01
= 676 N
Tension of the wire is 676 N.
Im not sure, but here are a few of mine : Learn to be silent, and listen, take massive action and be proactive, listen, focus, and lastly, persist. Hope this helped! (:
Answer:
They can do this with the help of mechanical power generated from the human muscle.
Explanation:
Since rescue workers engage in missions where it is usually difficult for them to get electrical energy to their devices and working tools, they could employ various materials that can be sourced around them to get energy to their tools. One of such is the mechanical power generated from the human body through squeezing and compressing.
Some green devices such as the dyno torch have been designed to be powered through this method. Repeated squeezing of its flywheel allows light to be generated.