Answer:
<h2>Generator </h2>
Explanation:
A generator converts mechanical energy into electrical energy
Answer:
The current drawn from the outlet is 0.2 A
The number of turns on the input side is 350 turns
Explanation:
Given;
number of turns of the secondary coil, Ns = 35 turns
the output current,
= 2 A
power supplied,
= 24 W
the standard wall outlet in most homes = 120 V = input voltage
For an ideal transformer; output power = input power
the current drawn from the outlet is calculated;

The number of turns on the input side is calculated as;

Answer:
a) 
b) 
Explanation:
Previous concepts
The cumulative distribution function (CDF) F(x),"describes the probability that a random variableX with a given probability distribution will be found at a value less than or equal to x".
The exponential distribution is "the probability distribution of the time between events in a Poisson process (a process in which events occur continuously and independently at a constant average rate). It is a particular case of the gamma distribution".
Part a
Let X the random variable of interest. We know on this case that 
And we know the probability denisty function for x given by:

In order to find the cdf we need to do the following integral:

Part b
Assuming that
, then the density function is given by:

And for this case we want this probability:

And evaluating the integral we got:

Answer:
There are three common methods of charging a battery; constant voltage, constant current and a combination of constant voltage/constant current with or without a smart charging circuit.
Constant voltage allows the full current of the charger to flow into the battery until the power supply reaches its pre-set voltage. The current will then taper down to a minimum value once that voltage level is reached. The battery can be left connected to the charger until ready for use and will remain at that “float voltage”, trickle charging to compensate for normal battery self-discharge.
Constant current is a simple form of charging batteries, with the current level set at approximately 10% of the maximum battery rating. Charge times are relatively long with the disadvantage that the battery may overheat if it is over-charged, leading to premature battery replacement. This method is suitable for Ni-MH type of batteries. The battery must be disconnected, or a timer function used once charged.
Constant voltage / constant current (CVCC) is a combination of the above two methods. The charger limits the amount of current to a pre-set level until the battery reaches a pre-set voltage level. The current then reduces as the battery becomes fully charged. The lead acid battery uses the constant current constant voltage (CC/CV) charge method. A regulated current raises the terminal voltage until the upper charge voltage limit is reached, at which point the current drops due to saturation.
“Thinking about pleasant things to pass the time” would not promote safety in the shop because it would be taking the focus away from important tasks, which in turn decreases safety.