Answer:
![Q=15.7Kw](https://tex.z-dn.net/?f=Q%3D15.7Kw)
Explanation:
From the question we are told that:
Initial Pressure ![P_1=4bar](https://tex.z-dn.net/?f=P_1%3D4bar)
Initial Temperature ![T_1=20 C](https://tex.z-dn.net/?f=T_1%3D20%20C)
Final Pressure ![P_2=12 bar](https://tex.z-dn.net/?f=P_2%3D12%20bar)
Final Temperature ![T_2=80C](https://tex.z-dn.net/?f=T_2%3D80C)
Work Output ![W= 60 kJ/kg](https://tex.z-dn.net/?f=W%3D%2060%20kJ%2Fkg)
Generally Specific Energy from table is
At initial state
![P_1=4bar \& T_1=20 C](https://tex.z-dn.net/?f=P_1%3D4bar%20%5C%26%20T_1%3D20%20C)
![E_1=262.96KJ/Kg](https://tex.z-dn.net/?f=E_1%3D262.96KJ%2FKg)
With
Specific Volume ![V'=0.05397m^3/kg](https://tex.z-dn.net/?f=V%27%3D0.05397m%5E3%2Fkg)
At Final state
![P_2=12 bar \& P_2=80C](https://tex.z-dn.net/?f=P_2%3D12%20bar%20%5C%26%20P_2%3D80C)
![E_1=310.24KJ/Kg](https://tex.z-dn.net/?f=E_1%3D310.24KJ%2FKg)
Generally the equation for The Process is mathematically given by
![m_1E_1+w=m_2E_2+Q](https://tex.z-dn.net/?f=m_1E_1%2Bw%3Dm_2E_2%2BQ)
Assuming Mass to be Equal
![m_1=m_1](https://tex.z-dn.net/?f=m_1%3Dm_1)
Where
![m=\frac{V}{V'}](https://tex.z-dn.net/?f=m%3D%5Cfrac%7BV%7D%7BV%27%7D)
![m=frac{0.06666}{V'=0.05397m^3/kg}](https://tex.z-dn.net/?f=m%3Dfrac%7B0.06666%7D%7BV%27%3D0.05397m%5E3%2Fkg%7D)
![m=1.24](https://tex.z-dn.net/?f=m%3D1.24)
Therefore
![1.24*262.96+60)=1.24*310.24+Q](https://tex.z-dn.net/?f=1.24%2A262.96%2B60%29%3D1.24%2A310.24%2BQ)
![Q=15.7Kw](https://tex.z-dn.net/?f=Q%3D15.7Kw)
Answer:
If I am not mistaken I believe it is a higher voltage.
Explanation:
Hope this helps
Answer:
a.)
US Sieve no. % finer (C₅ )
4 100
10 95.61
20 82.98
40 61.50
60 42.08
100 20.19
200 6.3
Pan 0
b.) D10 = 0.12, D30 = 0.22, and D60 = 0.4
c.) Cu = 3.33
d.) Cc = 1
Explanation:
As given ,
US Sieve no. Mass of soil retained (C₂ )
4 0
10 18.5
20 53.2
40 90.5
60 81.8
100 92.2
200 58.5
Pan 26.5
Now,
Total weight of the soil = w = 0 + 18.5 + 53.2 + 90.5 + 81.8 + 92.2 + 58.5 + 26.5 = 421.2 g
⇒ w = 421.2 g
As we know that ,
% Retained = C₃ = C₂×![\frac{100}{w}](https://tex.z-dn.net/?f=%5Cfrac%7B100%7D%7Bw%7D)
∴ we get
US Sieve no. % retained (C₃ ) Cummulative % retained (C₄)
4 0 0
10 4.39 4.39
20 12.63 17.02
40 21.48 38.50
60 19.42 57.92
100 21.89 79.81
200 13.89 93.70
Pan 6.30 100
Now,
% finer = C₅ = 100 - C₄
∴ we get
US Sieve no. Cummulative % retained (C₄) % finer (C₅ )
4 0 100
10 4.39 95.61
20 17.02 82.98
40 38.50 61.50
60 57.92 42.08
100 79.81 20.19
200 93.70 6.3
Pan 100 0
The grain-size distribution is :
b.)
From the diagram , we can see that
D10 = 0.12
D30 = 0.22
D60 = 0.12
c.)
Uniformity Coefficient = Cu = ![\frac{D60}{D10}](https://tex.z-dn.net/?f=%5Cfrac%7BD60%7D%7BD10%7D)
⇒ Cu = ![\frac{0.4}{0.12} = 3.33](https://tex.z-dn.net/?f=%5Cfrac%7B0.4%7D%7B0.12%7D%20%3D%203.33)
d.)
Coefficient of Graduation = Cc = ![\frac{D30^{2}}{D10 . D60}](https://tex.z-dn.net/?f=%5Cfrac%7BD30%5E%7B2%7D%7D%7BD10%20.%20D60%7D)
⇒ Cc =
= 1
The answer & explanation for this question is given in the attachment below.