Answer:
2.5 m/s²
Explanation:
Using the formula, v = u + at ( v = Final velocity; u = Initial velocity; t = Time; a = Acceleration)
25 = 0 + 10a
a = 25/10 = 2.5 m/s²
The best and most correct answer among the choices provided by your question is the fourth choice.
Chlorine and sodium are most likely to form monatomic ions.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
.
Explanation:
The frequency
of a wave is equal to the number of wave cycles that go through a point on its path in unit time (where "unit time" is typically equal to one second.)
The wave in this question travels at a speed of
. In other words, the wave would have traveled
in each second. Consider a point on the path of this wave. If a peak was initially at that point, in one second that peak would be
How many wave cycles can fit into that
? The wavelength of this wave
gives the length of one wave cycle. Therefore:
.
That is: there are
wave cycles in
of this wave.
On the other hand, Because that
of this wave goes through that point in each second, that
wave cycles will go through that point in the same amount of time. Hence, the frequency of this wave would be
Because one wave cycle per second is equivalent to one Hertz, the frequency of this wave can be written as:
.
The calculations above can be expressed with the formula:
,
where
represents the speed of this wave, and
represents the wavelength of this wave.
Answer:
Explanation: When a body covers unequal distances in equal intervals of time in a specified direction, the body is said to be moving with a variable velocity. Example: A rotating fan at a constant speed has variable velocity, because of continuous change in direction.
Explanation:
It is given that, the force needed to keep a car from skidding on a curve varies inversely as the radius of the curve and jointly as the weight of the car and the square of the car's speed such that,


mg is the weight of the car
r is the radius of the curve
v is the speed of the car
Case 1.
F = 640 pounds
Weight of the car, W = mg = 2600 pound
Radius of the curve, r = 650 ft
Speed of the car, v = 40 mph

k = 0.1
Case 2.
Radius of the curve, r = 750 ft
Speed of the car, v = 30 mph

F = 312 N
Hence, this is the required solution.