Answer:
Explanation:
In the whole process , electric potential energy is converted into kinetic energy .
Kinetic energy = 3.83 MeV
= 3.83 x 1.6 x 10⁻¹⁶ J
= 6.128 x 10⁻¹⁶ J .
Let the closest distance of approach be r .
Electric potential energy = k Q q / r , Q is charge on nucleus , q is charge on alpha particle , r is closest distance .
Electric potential energy = 9 x 10⁹ x 79 x 1.6 x 10⁻¹⁹ x 2 x 1.6 x 10⁻¹⁹ / r
= 3640.32 x 10⁻²⁹ / r
So,
6.128 x 10⁻¹⁶= 3640.32 x 10⁻²⁹ / r
r = 3640.32 x 10⁻²⁹ / 6.128 x 10⁻¹⁶
= 594.05 x 10⁻¹³
= 59.405 x 10⁻¹²
= 59.405 pm .
Answer:
the internal resistance of the cell is 0.1 ohm.
Explanation:
Given;
p.d at the terminals of a battery at no load, E₁ = 25 V
p.d at the terminals of a battery at a load, E₂ = 24 V
current through the circuit, I = 10 A
The potential drop across the circuit, V = E₁ - E₂
= 25 V - 24 V
= 1 V
The internal resistance of the cell is calculated as follows;
r = V/I
r = 1 / 10
r = 0.1 ohm
Therefore, the internal resistance of the cell is 0.1 ohm.
Well you have to think of it like electricity go through your answer closes to that and figure it out