So we need to find the formula for magnetic field B using the current (I) and the distance from the probe (d). So, We know that the stronger the current I, the stronger the magnetic field B. That tells us that the I and B are proportional. Also we know that the strength of the magnetic field B is weaker as the distance d of the probe increases. That tells us that B and d are inversely proportional. So our formula should have B=(I/d)*c where c is a constant of proportionality. c=μ₀/2π where μ₀ is the permeability of free space. So finally our formula is B=(μ₀I)/(2πd).
Answer:
a) Temperatura, b) Temperature, c) Constant
, d) None of these
, e) Gibbs enthalpy and free energy (G)
Explanation:
a) the expression for ideal gases is PV = nRT
Temperature
b) The internal energy is E = K T
Temperature
c) S = ΔQ/T
In an isolated system ΔQ is zero, entropy is constant
Constant
d) all parameters change when changing status
None of these
e) Gibbs enthalpy and free energy
In 0.25h it will move in 22.5 kilometers.
<h3><u>Answer and explanation;</u></h3>
-Rate of reaction is the speed at which the reactants are converted to products.
-Rate of reactions depends on a number of factors which includes<u>;</u>
- <em><u>Concentration of reactants</u></em>;<u><em> increasing the concentration of reactants</em></u> increases the rate of reaction.
- <u><em>Temperature;</em></u><u><em> </em></u>An <u><em>increase in temperature results to an increased rate of reaction.</em></u> Increase in temperature increases the kinetic energy of molecules thus the collision per unit time also increases and hence the rate of reaction increases.
- <u><em>Decreasing the size of particles of solid reactants</em></u> also increases the rate of reaction. This is because smaller particles increases the surface area on which more collisions can occur thus a faster rate of reaction.
- <em>Adding a catalyst also increases the rate of reaction.</em> This is because catalysts lower the activation energy of reactants, minimum energy require by reactants for the reaction to take place. This thus increases the rate of reaction.
Answer:
a. directive zoning
Explanation:
Directive zoning is an instrument used in master plans, whereby the city is divided into areas on which differentiated land use and land use guidelines apply, especially urban indexes. Directive zoning acts primarily by controlling two main elements: the use and size (or size) of lots and buildings. It is therefore assumed that the end result achieved through individual actions is in line with the municipality's objectives, which include proportionality between occupation and infrastructure, the need to protect fragile areas and / or cultural interest, the harmony from the volumetric point of view, etc.