Answer:
The air in the soccer ball in cold weather will decrease slightly in size and it becomes flat. The air in the soccer ball in hot weather will seem flat because the low preasure leads to lower bounce in the ball.
The metal door frame in cold weather contracts and the wood contracts more in the winter. The metal door frame in hot weather thermal blowing can occur on the outer surface of the metal door frame. Hopefully that is what you were looking for have a good day.
C. Amount of oxygen
The others either change but don’t decrease or they increase.
Answer:
Explanation:
<u>Motion in The Plane</u>
When an object is launched in free air with some angle respect to the horizontal, it describes a known parabolic path, comes to a maximum height and finally drops back to the ground level at a certain distance from the launching place.
The movement is split into two components: the horizontal component with constant speed and the vertical component with variable speed, modified by the acceleration of gravity. If we are given the values of and as the initial speed and angle, then we have
If we want to know the maximum height reached by the object, we find the value of t when becomes zero, because the object stops going up and starts going down
Solving for t
Then we replace that value into y, to find the maximum height
Operating and simplifying
We have
The maximum height is
Answer:
Answer:
118.4 N
Explanation:
weight of chair, mg = 95 N
Push, F = 39 N
Ф = 37 ° below x axis
Let n be the normal force.
So, by using the diagram and resolve the components of Force F.
n = mg + F SinФ
n = 95 + 39 Sin 37°
n = 95 + 39 x 0.6
n = 118.4 N
Explanation:
Answer:
Explanation:
Let 100 m/s be the velocity of projection.
So horizontal component
= 100 cos42
= 74.31 m /s
Vertical component = - 100 sin 42 . in upward direction
66.91 m/s
Net displacement = 2.1 downwards ( + ve )
Using s = ut + 1/2 gt²
2.1 = - 66.91 t + .5 x 9.8 x t²
4.9 t² - 66.91 t - 2.1 = 0
t = 13.685 s
Horizontal distance covered
= 13.685 x 74.31
= 1016.93 m
If angle of projction is 40°
So horizontal component
= 100 cos40
= 76.60 m /s
Vertical component = - 100 sin 42 . in upward direction
64.27 m/s
Net displacement = 2.1 downwards ( + ve )
Using s = ut + 1/2 gt²
2.1 = -76.60 t + .5 x 9.8 x t²
4.9 t² - 76.60 t - 2.1 = 0
t = 15.659 s
Horizontal distance covered
= 15.659 x 76.60
= 1199.49 m
So horizontal range is increased , if angle of projection is increased .