1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
andrew-mc [135]
3 years ago
6

A penudulum has a period of 6.5s what is its frequency

Physics
1 answer:
Sergio039 [100]3 years ago
5 0

Answer:0.153 Hz

Explanation: The relation between Time Period(T) and frequency(f) is given by T=1/f

Plug in the values and u arrive at the answer

You might be interested in
Planets are not uniform inside. Normally, they are densest at the center and have decreasing density outward toward the surface.
elena-s [515]

Answer:

g=13.42\frac{m}{s^2}

Explanation:

1) Notation and info given

\rho_{center}=13000 \frac{kg}{m^3} represent the density at the center of the planet

\rho_{surface}=2100 \frac{kg}{m^3} represent the densisty at the surface of the planet

r represent the radius

r_{earth}=6.371x10^{6}m represent the radius of the Earth

2) Solution to the problem

So we can use a model to describe the density as function of  the radius

r=0, \rho(0)=\rho_{center}=13000 \frac{kg}{m^3}

r=6.371x10^{6}m, \rho(6.371x10^{6}m)=\rho_{surface}=2100 \frac{kg}{m^3}

So we can create a linear model in the for y=b+mx, where the intercept b=\rho_{center}=13000 \frac{kg}{m^3} and the slope would be given by m=\frac{y_2-y_1}{x_2-x_1}=\frac{\rho_{surface}-\rho_{center}}{r_{earth}-0}

So then our linear model would be

\rho (r)=\rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r

Since the goal for the problem is find the gravitational acceleration we need to begin finding the total mass of the planet, and for this we can use a finite element and spherical coordinates. The volume for the differential element would be dV=r^2 sin\theta d\phi d\theta dr.

And the total mass would be given by the following integral

M=\int \rho (r) dV

Replacing dV we have the following result:

M=\int_{0}^{2\pi}d\phi \int_{0}^{\pi}sin\theta d\theta \int_{0}^{r_{earth}}(r^2 \rho_{center}+\frac{\rho_{surface}-\rho_{center}}{r_{earth}}r)

We can solve the integrals one by one and the final result would be the following

M=4\pi(\frac{r^3_{earth}\rho_{center}}{3}+\frac{r^4_{earth}}{4} \frac{\rho_{surface}-\rho_{center}}{r_{earth}})

Simplyfind this last expression we have:

M=\frac{4\pi\rho_{center}r^3_{earth}}{3}+\pi r^3_{earth}(\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}(\frac{4}{3}\rho_{center}+\rho_{surface}-\rho_{center})

M=\pi r^3_{earth}[\rho_{surface}+\frac{1}{3}\rho_{center}]

And replacing the values we got:

M=\pi (6.371x10^{6}m)^2(\frac{1}{3}13000 \frac{kg}{m^3}+2100 \frac{kg}{m^3})=8.204x10^{24}kg

And now that for any shape the gravitational acceleration is given by:

g=\frac{MG}{r^2_{earth}}=\frac{(6.67408x10^{-11}\frac{m^3}{kgs^2})*8.204x10^{24}kg}{(6371000m)^2}=13.48\frac{m}{s^2}

4 0
2 years ago
True or false this is for a test
OleMash [197]

Answer:

true

Explanation:

7 0
3 years ago
Read 2 more answers
Driving a motor vehicle often requires __________ reaction time.
Anastasy [175]

It often requires STANDARD reaction time

8 0
3 years ago
Read 2 more answers
Katelyn (55 kg) is practicing a drop jump in the biomechanics lab. She steps off a plyometrics box, lands on the force plate, an
suter [353]

Answer:

J = 357.5 kg*m/s

Explanation:

  • The impulse exerted on Katelyn when she was on the force plate, is equal to the change in her momentum, according to Newton's 2nd Law.
  • Assuming as the positive direction the upward direction (coincident with the positive y-axis) we can express the initial momentum as follows:

       p_{o} = m*v_{o} = 55 kg * (-3.0 m/s)  (1)

  • By the same token, the final momentum is as follows:

       p_{f} = m*v_{f} = 55 kg * (3.5 m/s)  (2)

  • As we have already said, the impulse J is just equal to the change in momentum, i.e., the difference between (2) and (1):

      J = p_{f} - p_{o} = m* (v_{f} -v_{o}) = 55 kg* (3.5m/s- (-3.0m/s)) = 357.5 kg*m/s (3)

5 0
2 years ago
Explain how birds, bats, insects, airplanes, rockets, and hot air balloons achieve their flight.
Oksi-84 [34.3K]

The birds, bats, insects, airplanes, rockets, and hot air balloons achieve their flight by creating high pressure below the aircraft and low pressure above it

<h3>What are living and non-living things?</h3>

They both consist of fundamentally simple building blocks. They are composed of substances or mass. Atmospheric and molecular building blocks make up the world.

In order to create high pressure below the aircraft and low pressure above it, airplanes employ specially built wings.

The wing receives sufficient airflow past it to counteract the weight and drag of the aircraft by utilizing a device to provide thrust, such as a propeller.

High pressure underneath the aircraft and low pressure above it is produced by specially constructed wings used by airplanes.

The wing receives enough airflow through it by the use of a thrust-generating device, like a propeller, to overcome the weight and drag of the aircraft.

The differences between how living and non-living things fly;

1. Moving both living and non-living objects consumes energy. Flying animals utilize their wings to create both lift and propulsion by moving them in relation to the body.

In contrast to most air vehicles, where the components that generate lift, wings, and thrust engines or propellers are distinct, the wings stay stationary.

Animal aviators like birds as well as natural parachuters like patagial as well as human inventions like aircraft as well as rockets that can power spacecraft and spaceplanes are just a few examples of the many things that can fly.

Hence, birds, bats, insects, airplanes, rockets, and hot air balloons achieve their flight by creating high pressure below the aircraft and low pressure above it

To learn more about living and nonliving things, refer to brainly.com/question/7807759

#SPJ1

6 0
1 year ago
Other questions:
  • What does the star release, and in what form do we see it ?
    7·1 answer
  • How many independent variables does a good investigator use in his or her experiment?
    7·1 answer
  • Faraday's law states that voltage can be changed by moving the coil out of the magnetic field true or false
    5·1 answer
  • Best Answer will receive BRAINLIEST One consequence of Newton's third law of motion is that __________. A. every object that has
    15·2 answers
  • Monochromatic light is incident on two slits separated by 0,2 mm. An interference pattern is observed on a screen 3,7 m away. Th
    8·1 answer
  • Explain the expression “light travels at a speed”.
    12·2 answers
  • Please help me with this i dont know it​
    12·1 answer
  • First right is brainliest, plz help:)
    12·1 answer
  • When we say charge is conserved, we mainly mean that charge can be _________. View Available Hint(s)for Part A constant in all b
    14·1 answer
  • What is the algebraic expression for the component of the normal force in the vertical direction?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!