Answer:

Explanation:
When the unpolarized light passes through the first polarizer, only the component of the light parallel to the axis of the polarizer passes through.
Therefore, after the first polarizer, the intensity of light passing through it is halved, so the intensity after the first polarizer is:

Then, the light passes through the second polarizer. In this case, the intensity of the light passing through the 2nd polarizer is given by Malus' law:

where
is the angle between the axes of the two polarizer
Here we have

So the intensity after the 2nd polarizer is

And substituting the expression for I1, we find:

I would say Option B) because Option C) is wrong since matter cannot be created. A closed system does not exchange matter so it's not Option D). Since an island is an isolated area, Option A) is wrong.
Answer:
e = Δφ / Δt induced emf is proportional to enclosed flux
Also φ = B * A flux is proportional to area and enclosed field
If the induced emf e increases with time than the flux and hence the magnetic field is increasing with time (replace B with G)
Since e = ΔG * A / Δt if e is linear then G must also be linear and be proportional to the time
Answer
given,
resistance = 0.05 Ω
internal resistance of battery = 0.01 Ω
electromotive force = 12 V
a) ohm's law
V = IR
and volage
now,

inserting the values
I = 200 A
b) Voltage
V = I R
V = 200 x 0.05
V = 10 V
c) Power
P = I V
P = 200 x 10 = 2000 W
d) total resistance = 0.05 + 0.09 = 0.14 Ω
I = 80 A
V = 80 x 0.05 = 4 V
P = 4 x 80 = 320 W
It is eight times more than the star A.
<h3>What is luminosity and on which it depends?</h3>
The luminosity of an object is a measure of its intrinsic brightness and is defined as the amount of energy the object emits in a fixed time.
luminousity depends upon the two factors are:
1) The star's actual brightness
Some stars are naturally more luminous than others ,so the brightness level from one star to next star is significantly different.
2) The star distance from us
The more distance of an object the dimmer it appears.
Energy emitted = sAT⁴
where s is stefan constant
A is surface area and T is temperature .
to learn more about Luminosity click here brainly.com/question/14140223
#SPJ4