Answer:
100 V
Explanation:
Hi there!
Ohm's law states that
where V is the voltage, I is the current and R is the resistance.
Plug the given information into Ohm's law (R=50, I=A)

Therefore, the voltage across this current is 100 V.
I hope this helps!
The Force per meter on a straight wire carrying current in a magnetic field is<u> 0.045 N/m.</u>
<u>Calculation:-</u>
F/ℓ = B I sin θ
Where B – Magnetic field = 0.02 T I – Current = 5 A
Substituting the values
F/ℓ = (0.02) (5) (sin 27 deg)
F/ℓ = <u>0.045 N/m</u>
A force is an influence that can alternate the motion of an item. A force can cause an item with mass to trade its pace, i.e., to boost up. force can also be described intuitively as a push or a pull. A pressure has both value and course, making it a vector quantity.
The push or pull on an item with mass causes it to change its velocity. force is an external agent capable of converting a frame's nation of relaxation or motion. It has significance and a path. A force is a push or pulls among gadgets. it is called an interplay because if one object acts on some other, its movement is matched with the aid of a reaction from the alternative object.
Learn more about force here:-brainly.com/question/12970081
#SPJ4
The general formula is: Momentum = (mass) x (speed)
I never like to just write a bunch of algebra without explaining it.
But in this particular case, there's really not much to say, and
I think the algebra will pretty well explain itself. I hope so:
Original momentum = (original mass) x (original speed)
New momentum = (2 x original mass) x (2 x original speed)
= (2) x (original mass) x (2) x (original speed)
= (2) x (2) x (original mass) x (original speed)
= (4) x (original mass) x (original speed)
= (4) x (original momentum).
The second law of thermodynamics establishes restrictions on the flow of thermal energy between two bodies. This law states that the energy does not flow spontaneously from a low temperature object T1, to another object that is at a high temperature T2.
For example. Suppose you place your cell phone on the table. Your phone is at a temperature of 40 ° C and the table is at 19 ° C. Then, it is impossible for the table to spontaneously transfer its thermal energy to the telephone, and so that the table gets colder and the telephone warmer.
Finally we can say that the correct option is B: From the hotter object to the cooler object