1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksi-84 [34.3K]
3 years ago
8

HELP ME PLEASE RN

Engineering
1 answer:
IRISSAK [1]3 years ago
8 0

Answer:

information

Explanation:

see picture

You might be interested in
java Write a program that simulates tossing a coin. Prompt the user for how many times to toss the coin. Code a method with no p
max2010maxim [7]

Answer:

The solution code is written in Java.

  1. public class Main {
  2.    public static void main(String[] args) {
  3.        Scanner inNum = new Scanner(System.in);
  4.        System.out.print("Enter number of toss: ");
  5.        int num = inNum.nextInt();
  6.        for(int i=0; i < num; i++){
  7.            System.out.println(toss());
  8.        }
  9.    }
  10.    public static String toss(){
  11.        String option[] = {"heads", "tails"};
  12.        Random rand = new Random();
  13.        return option[rand.nextInt(2)];
  14.    }
  15. }

Explanation:

Firstly, we create a function <em>toss()</em> with no parameter but will return a string (Line 14). Within the function body, create an option array with two elements, "heads" and "tails" (Line 15). Next create a Random object (Line 16) and use <em>nextInt()</em> method to get random value either 0 or 1. Please note we need to pass the value of 2 into <em>nextInx() </em>method to ensure the random value generated is either 0 or 1.  We use this generate random value as an index of <em>option </em>array and return either "heads" or "tails" as output (Line 17).

In the main program, we create Scanner object and use it to prompt user to input an number for how many times to toss the coin (Line 6 - 7). Next, we use the input num to control how many times a for loop should run (Line 9). In each round of the loop, call the function <em>toss() </em>and print the output to terminal (Line 10).  

4 0
3 years ago
Read 2 more answers
This question is 100 points<br> I NEED HELP!!!
Mamont248 [21]

Answer:

hey if u repost this i can answer it u and u dont have to waste this much points but its super blury and not even able to read a single word

8 0
3 years ago
Read 2 more answers
Explain the conductivity results observed for ionic compounds in the solid state and in aqueous solution.i.Solid ionic compounds
Svetach [21]

Answer:

Aqueous solution of ionic compounds conduct electricity while solid ionic compounds don't.

Explanation:

Ionic compound conduct electricity when liquid or in aqueous solution that is resolved in water because the ionic bonds of the compound become weak and the ions are free to move from place to place.

Ionic compounds don't conduct electricity while in solid state because the ionic bonds are to strong and ions cannot move around with lack of space for movement which makes the electric conductivity zero.

8 0
3 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
Determine how much concrete you will need for a slab which is 50 feet by 30 feet wide and 1 foot thick
Levart [38]

Answer:

Amount of concrete need to make slab = 1,500 feet³

Explanation:

Given:

Length of slab = 50 feet

Width of slab = 30 feet

Height of slab = 1 feet

Find:

Amount of concrete need to make slab

Computation;

Amount of concrete need to make slab = Volume of cuboid

Volume of cuboid = (l)(b)(h)

Amount of concrete need to make slab = (50)(30)(1)

Amount of concrete need to make slab = 1,500 feet³

6 0
2 years ago
Other questions:
  • Q5. A hypothetical metal alloy has a grain diameter of 2.4 x 10-2 mm. After a heat treatment at 575°C for 500 min, the grain dia
    7·1 answer
  • Two cars A and B leave an intersection at the same time. Car A travels west at an average speed of x miles per hour and car B tr
    9·1 answer
  • Water (cp = 4180 J/kg·°C) enters the 2.5 cm internal diameter tube of a double-pipe counter-flow heat exchanger at 17°C at a rat
    7·1 answer
  • Communication "works" to the degree that a wide variety of information is completely and thoroughly shared among the parties, an
    13·1 answer
  • Who is the best musician in Nigeria<br>​
    11·2 answers
  • Complete the following sentence. The skills and content of several subject areas were combined to form a new field known as a me
    12·2 answers
  • Piping layout carrying liquid water at 70°F at a volumetric flow rate of 0.2 is composed of four sections of 4-in. Diameter stee
    12·1 answer
  • ‘Politics and planning are increasingly gaining prominence in contemporary urban and regional planning debates’. Using relevant
    9·2 answers
  • The stagnation chamber of a wind tunnel is connected to a high-pressure airbottle farm which is outside the laboratory building.
    11·1 answer
  • During delivery of a 2023 ariya equipped with propilot assist 2. 0, what should you point out to your customers about the turn s
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!