Answer:
76.0%
Explanation:
Let's consider the following reaction.
CaCO₃(s) ⇄ CaO(s) + CO₂(g)
At equilibrium, the equilibrium constant Kp is:
Kp = 1.16 = pCO₂ ⇒ pCO₂ = 1.16 atm
We can calculate the moles of CO₂ at equilibrium using the ideal gas equation.

From the balanced equation, we know that 1 mole of CO₂ is produced by 1 mole of CaCO₃. Taking into account that the molar mass of CaCO₃ is 100.09 g/mol, the mass of CaCO₃ that reacted is:

The percentage by mass of the CaCO₃ that reacted to reach equilibrium is:

Answer: You forgot to zero the balance
Explanation:
So, you need to have same ammount of atoms on the left and on the right side of the equation. You need to count the ammount of attoms of every substance on the left, and make sure that on the right side the ammount is same. For example in the 1st one it’s 6Sn+2P4=2Sn3P4, so that you have 6atoms of Sn on the left and 6 atoms of Sn on the right, same with the P
Answer:
Two covalent bonds form between the two oxygen atoms because oxygen requires two shared electrons to fill its outermost shell. Nitrogen atoms will form three covalent bonds (also called triple covalent) between two atoms of nitrogen because each nitrogen atom needs three electrons to fill its outermost shell.
Hello!
The half-life is the time of half-disintegration, it is the time in which half of the atoms of an isotope disintegrate.
We have the following data:
mo (initial mass) = 53.3 mg
m (final mass after time T) = ? (in mg)
x (number of periods elapsed) = ?
P (Half-life) = 10.0 minutes
T (Elapsed time for sample reduction) = 25.9 minutes
Let's find the number of periods elapsed (x), let us see:






Now, let's find the final mass (m) of this isotope after the elapsed time, let's see:




I Hope this helps, greetings ... DexteR! =)