Use Newton's second law. The net force on the hero is
∑ <em>F</em> = <em>T</em> - <em>m g</em> = <em>m</em> (2.00 m/s²)
where
• <em>T</em> = tension in the rope
• <em>m</em> = 75.0 kg = mass of the hero
• <em>g</em> = 9.80 m/s² = acceleration due to gravity
Solve for <em>T</em> :
<em>T</em> = (75.0 kg)<em> </em>(<em>g</em> + 2.00 m/s²) = 885 N
Answer:
10 N.m
Explanation:
Force * Perpendicular distance.
= 20 N * 0.5 m
= 10 N.m
The complex, highly technical formula for capacitors is
<em>Q = C V</em>
Charge = (capacitance) (voltage)
Charge = (3 F) (24 V)
<em>Charge = 72 Coulombs</em>
The positive plate of the capacitor is missing 72 coulombs worth of electrons. They were sucked into positive terminal of the battery stack.
The negative plate of the capacitor has 72 coulombs worth of extra electrons. They came from the negative terminal of the battery stack.
You should be aware that this is a humongous amount of charge ! An average <u><em>lightning bolt</em></u>, where electrons flow between a cloud and the ground for a short time, is estimated to transfer around <u><em>15 coulombs</em></u> of charge !
The scenario in the question involves a "supercapacitor". 3 F is is no ordinary component ... One distributor I checked lists one of these that's able to stand 24 volts on it, but that product costs $35 apiece, you have to order at least 100 of them at a time, and they take 2 weeks to get.
Also, IF you can charge this animal to 24 volts, it will hold 864J of energy. You'd probably have a hard time accomplishing this task with a bag of leftover AA batteries.
a tree truck
is the answer i hope this helps you xD
Guessing you want the average speed. We can multiple each speed by the time we spent going that speed, and them all together and then divide by the total time we spent in traffic to get the average speed. We spent a total of 7.5 minutes in traffic, so average speed = (12*1.5+0*3.5+15*2.5)/7.5 = 7.4 m/s