You can find an element's amount of energy level by determining their place on the periodic table. An element's amount of energy levels are represented by which period/ row they are in. For example, Calcium has 4 energy levels. I know this because it is in the fourth period on the table.
Hope this helps!
Answer:
I know you have been waiting awhile for this question to be answered :)
Stoichiometry is used in industry quite often to determine the amount of materials required to produce the desired amount of products in a given useful equation. Each one of these products requires stoichiometry. There would be no products from these industries without chemical stoichiometry.
Explanation:
Hopefully this helps :D
Sorry you had to wait so long :(
Enzymes catalyze the chemical reactions, they act upon the reaction substrates and speed up the reaction. Enzymes have active sites, the places where the reaction substrates interact with the enzyme bringing about the conversion of substrates to products. So, as the enzyme concentration increases the rate of reaction increases till a point where the rate is leveled off. The rate does not further increase, as the substrate might have become limiting at that point. All the available amount of substrate would have been associated with the active sites of the enzymes. So, at that point although there is enough catalyst, lack of substrate would limit the rate of reaction.
We can use the ideal gas law equation to find the volume of the gas.
PV = nRT
P - pressure - 400 kPa
V - volume
n - number of moles - 4.00 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 300.0 K
substituting these values in the equation
400 000 Pa x V = 4.00 mol x 8.314 Jmol⁻¹K⁻¹ x 300.0 K
V = 24.9 dm³
Volume is 24.9 dm³
Answer:
One that “Can be answered by conducting an experiment”
Explanation: