Answer:
Yes.
Explanation:
Yes, this difference of readings will definitely affect the results of the experiment as well as the E values because the readings taken by both students are different from one another. There is a fault in one of the thermometer because both shows different readings of temperature of the same solution. This will affect the overall experiment and due to this error, we are unable to tell that which one reading is correct so the answer is uncertain or unsure.
They can decay through one of three ways:
alpha decay
beta decay and
gamma decay
ALPHA- particle with two neutrons and two protons is ejected from the nucleus of the radioactive atom. this particle released is called an alpha particle. Only occurs with heavy metals.
BETA- pretty much when a proton is transformed into a neutron, or vise versa. in a beta minus decay, the nuetron decays into a proton and in a beta plus decay, a proton decays into a neutron
GAMMA- the nucleus changes from a high energy state to a low energy state by releasing electromagnetic radiation (photons). the number of protons and neutrons stay the same during this reaction therefore the element is still the same.
Answer:
Wall, cup, mug, plastic spoon
Explanation:
Because all of those are glass and it is important to us to make sure that if you are touching this brle careful
Answer:
I think it could be Between A or D
Explanation:
I'm not sure but I think idk so sorry if it's so wrong
Answer:
70.0 %
Explanation:
Step 1: Given data
- Mass of nitrogen (mN): 74.66 g
- Mass of the compound (mNxOy): 250 g
Step 2: Calculate the mass of oxygen (mO) in the compound
The mass of the compound is equal to the sum of the masses of the elements that form it.
mNxOy = mN + mO
mO = mNxOy - mN
mO = 250 g - 74.66 g = 175 g
Step 3: Determine the percent composition of oxygen in the sample
We will use the following expression.
%O = mO / mNxOy × 100%
%O = 175 g / 250 g × 100% = 70.0 %