Answer:
a) t = 0.25 s, b) x = 0.075 m
Explanation:
a) For this exercise we will use kinematic relationships in one dimension
v = v₀ + a t
in the problem they indicate the initial velocity v₀ = 0.15 m / s, the final velocity v = 0.45 m / s and the acceleration of the squid a = 1.2 m / s²
t =
we calculate
t =
t = 0.25 s
b) We can also find the distance traveled during this acceleration
v² = v₀² + 2a x
x = 
let's calculate
x =
x = 0.075 m
Answer:
The near point of an eye with power of +2 dopters, u' = - 50 cm
Given:
Power of a contact lens, P = +2.0 diopters
Solution:
To calculate the near point, we need to find the focal length of the lens which is given by:
Power, P = 
where
f = focal length
Thus
f = 
f =
= + 0.5 m
The near point of the eye is the point distant such that the image formed at this point can be seen clearly by the eye.
Now, by using lens maker formula:

where
u = object distance = 25 cm = 0.25 m = near point of a normal eye
u' = image distance
Now,



Solving the above eqn, we get:
u' = - 0.5 m = - 50 cm
Answer:103 pounds
Explanation:
Given
width of window 
height of window 
standard atmospheric pressure 
Also 
Thus Net Force on the window will be the algebraic sum of Force due to outside and inside Pressure .


