I got you bro by the power of my heart and the felling of agony my condolences go to the Siskin of Thebes
The answer is the first bubble, it absorbs white light and refracts green, this is because the color you see is the reflection of the object
Answer:
ΔH°(f) = -110.5 Kj/mole (exothermic)
Explanation:
C + 1/2O₂ => CO
This is asking for the 'Standard Heat of Formation (ΔH°(f)* for carbon monoxide (CO). Values for many compounds can be found in the appendix of most college general chemistry text books. From Ebbing & Gammon, 11th edition, General Chemistry, Appendix C, page 8A.
*Standard Heat of Formation by definition is the heat gained or lost on formation of a substance (compound) from its basic elements in standard state.
The ΔH°(f) values as indicated are found in the appendix of most college chemistry texts. By choosing any compound, one can determine the standard heat of formation equation for the substance of interest. For example, consider Magnesium Carbonate; MgCO₃(s).The basic standard states of each element is found in the Appendix on Thermodynamic Properties for Substances at 25°C & 1 atm. having ΔH°(f) values = 0.00 Kj/mole. All elements in standard state have a 0 Kj/mol. See appendix and note that under the ΔH°(f) symbol some substances have 0.00 Kj/mol values. The associated element will be in basic standard state,
Standard Heat of Formation Equation for formation of Magnesium Carbonate;
Mg°(s) + C°(gpt)* + 3/2O₂(g) => MgCO₃(s) ; ΔH°(f) = -1111.7 Kj/mole
* gpt => graphite
The answer is London dispersin forces and dipole-induced dipole forces.
The London dispersion force is a temporary attractive force that results
when the electrons in two adjacent atoms occupy positions that make the
atoms form temporary dipoles. This force is sometimes called an induced
dipole-induced dipole attraction. This force is found in any compound and is the weakest atraction force between atoms or molecules.
Those temporay dipoles are not like the dipoles that form the polar molecules, because the polar molecules are the result of permanent dipoles.