Answer:
the number density of the protons in the beam is 3.2 × 10¹³ m⁻³
Explanation:
Given that;
diameter D = 2.0 mm
current I = 1.0 mA
K.E of each proton is 20 MeV
the number density of the protons in the beam = ?
Now, we make use of the relation between current and drift velocity
I = MeAv ⇒ 1 / eAv
The kinetic energy of protons is given by;
K = 
v²
v = √( 2K /
)
lets relate the cross-sectional area A of the beam to its diameter D;
A =
πD²
now, we substitute for v and A
n = I /
πeD² ×√( 2K /
)
n = 4I/π eD² × √(
/ 2K )
so we plug in our values;
n = ((4×1.0 mA)/(π(1.602×10⁻¹⁹C)(2mm)²) × √(1.673×10⁻²⁷kg / 2×( 20 MeV)(1.602×10⁻¹⁹ J/ev )
n = 1.98695 × 10¹⁸ × 1.6157967 × 10⁻⁵
n = 3.2 × 10¹³ m⁻³
Therefore, the number density of the protons in the beam is 3.2 × 10¹³ m⁻³
Ahhh... hello! I’ve done a science experiment that has asked this sort of question. Not as easy as it sounds... I know. I’ll tell you what I learned from that experiment. The answer will depend on the materials the ball is made of and then also your drop length. After these two things are determined, you can get a pretty close time and measurement. I hope this information helps. Have a great night!
~Brooke❤️
Answer:
Increase in the temperature of water would be 0.9 degree C
Explanation:
As we know by energy conservation
Change in the gravitational potential energy of the cylinder = increase in the thermal energy of the water
Here we know that the gravitational potential energy of the cylinder is given as

here we have
h = 300 m
now we can say

now if the cylinder falls from height h = 100 m
then we have

now from above two equations


E concave mirror because it reflects the light
Answer:
as the period decreases, the frequency and energy of the wave increase
Explanation:
Electromagnetic waves are oscillations of the electric and magnetic fields, described by maxwell's equations, the speed of the wave is called the speed of light
c = λ f
E = E cos (kx - wt)
Angular velocity is related to frequency and period.
w = 2π f = 2π / T
Let's analyze what happens when the wave period decreases, angular velocity and frequency increase.
This increase in frequency is reflected with the Planck equation in wave energy
E = h f
Therefore the wave carries more energy and can lead to stronger interactions with matter.
In summary, as the period decreases, the frequency and energy of the wave increase