Answer:
Josh is running at a speed of 9.09 yards per second.
Josh's velocity is 9.09 East.
Josh's force is 900 N.
Aaron Donald's force is 845 N.
Yes Josh scores the touchdown because he is faster and has more mass than Donald.
Explanation:
Josh scores the touchdown as he is heavier and faster than Donald.
Formulas are:
Force= mass x acceleration
Speed= distance divided by time.
Velocity= distance divided by time.
<h3><u>Answer</u>;</h3>
a. 3 molecules 3 carbon
b. 6 molecules 18 carbon
c. 6 molecules 18 carbon
d. 5 molecules 15 carbon
e. 3 molecules 15 carbon
f. 3 molecules 15 carbon
<h3><u>Explanation</u>;</h3>
- In the Calvin cycle, carbon atoms from CO2 are ncorporated into organic molecules and then used to build three-carbon sugars, a process that is fueled by, and dependent on, ATP and NADPH from the light reactions.
- Calvin cycle take place in the stroma. Reactions of Calvin cycle are divided into three main stages: carbon fixation, reduction, and regeneration of the starting molecule.
- During carbon fixation, a CO2 molecule combines with a five carbon acceptor molecule ribulose-1,5-bisphosphate. The result is a six carbon compound that splits to two three carbon compound, 3-PGA.
- During reduction; ATP and NADPH are used to convert the 3-PGA molecules into molecules of a three-carbon sugar, glyceraldehyde-3-phosphate.
- Finally during regeneration, some G3P molecules are used to make glucose while others are recycled to regenerate RuBP acceptor.
Answer:
62.5 mg
Explanation:
Just multiply the original amount by 1/2 three times:
500 mg x 1/2 x 1/2 x 1/2 = 62.5 mg
The answer is 0.975 L
Volume = mol/Molarity
We have molarity (0.788 M) and we need mol and volume. Let's first calculate number of moles of CaCl2 in 85.3 g:
Molar mass of CaCl2 is sum of atomic masses of Ca and Cl:
Mr(CaCl2) = Ar(Ca) + 2Ar(Cl) = 40 + 2 * 35.45 = 40 + 70.9 = 110.9 g/mol
So, if 110.9 g are in 1 mol, 85.3 g will be in x mol:
110.9 g : 1 mole = 85.3 g : x
x = 85.3 g * 1 mole / 110.9
x = 0.769 moles
Now, calculate the volume:
V = 0.769/0.788
V = 0.975 L
Answer:
The new pressure of the pump is 26.05 atm or 2639.4 kPa
Explanation:
Step 1: Data given
Volume of the bicycle tire pump = 252 mL = 0.252 L
Pressure of air = 995 kPa = 9.81989 atm
The volume of the pump is reduced to 95.0 mL = 0.095 L
Step 2: Calculate the new pressure
V1*P1 = V2*P2
⇒with V1 = the initial volume of the bicycle tire pump = 0.252 L
⇒with P1 = the initial pressure of the pump = 9.81989 atm = 995 kPa
⇒with V2 = the reduced volume of the pump = 0.095 L
⇒with P2 = the new pressure = TO BE DETERMINED
0.252 L * 9.81989 atm = 0.095 L * P2
P2 = 26.05 atm
The new pressure is 26.05 atm
OR
0.252 L * 995 = 0.095 L * P2
P2 = 2639.4 kPa
The new pressure of the pump is 26.05 atm or 2639.4 kPa