It is hard because we can't get past the crust, Our machines will burn up at the mantle and so will we. The layers go: crust, mantle, outer core, inner core.
The answer is: D.unstable nuclei emitting high-energy particles as they formed more stable compositions.
Those high-energy particles are alpha particles
, beta particles
, gamma radiation.
For example, the decay chain of ²³⁸U is called the uranium series.
Decay start with U-238 and ends with Pb-206. There are several alpha and beta minus decays.
Antoine Henri Becquerel (1852 – 1908) was a French physicist and the first person to discover evidence of radioactivity.
Becquerel wrapped fluorescing crystal (uranium salt potassium uranyl sulfate) in a cloth, along with the photographic plate and a copper Maltese cross.
Several days later, he discovered that a image of the cross appeared on the plate.
The uranium salt was emitting radiation.
Because of this discovery, Becquerel won a Nobel Prize for Physics in 1903, which he shared with Marie Curie and Pierre Curie.
The change of state that has been given in the question is called sublimation. It is actually the process in which a solid gets directly converted to gas without changing into liquid. I hope that this is the answer that you were looking for and the answer has actually come to your desired help.
Answer:
1.23 M
Explanation:
Molarity of a substance , is the number of moles present in a liter of solution .
M = n / V
M = molarity
V = volume of solution in liter ,
n = moles of solute ,
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
w = given mass of NaCl = 7.2 g
As we know , the molecular mass of NaCl = 58.5 g/mol
Moles is calculated as -
n = w / m = 7.2 g / 58.5 g/mol = 0.123 mol
Molarity is calculated as -
V = 100ml = 0.1 L (since , 1 ml = 1/1000L )
M = n / V = 0.123 mol / 0.1 L = 1.23 M
Starting from the radon mass, add the mass of the electron, and subtract the mass attributable to the gamma radiation <u>(931 Mev = 1 amu).</u>
<u></u>
<h3>
What is gamma radiation?</h3>
Gamma radiation (gamma rays) refers to the part of the electromagnetic spectrum with the most energy and shortest wavelength. Astrophysicists define gamma radiation as any radiation with an energy above 100 keV. Physicists define gamma radiation as high-energy photons released by nuclear decay.
Using the broader definition of gamma radiation, gamma rays are released by sources including gamma decay, lightning, solar flares, matter-antimatter annihilation, the interaction between cosmic rays and matter, and many astronomical sources. Gamma radiation was discovered by Paul Villard in 1900.
Gamma radiation is used to study the universe, treat gemstones, scan containers, sterilize foods and equipment, diagnose medical conditions, and treat some forms of cancer.
Learn more about gamma radiation
brainly.com/question/20799041
#SPJ4