Answer:

Explanation:
Hello!
In this case, since the equation for the ideal gas is:

For each gas, given the total volume, temperature (28.1+273.15=301.25K) and moles, we can easily compute the partial pressure as shown below:

Best regards!
Answer: 150 kPa
Explanation:
Given that,
Original volume of gas V1 = 30L
Original pressure of gas P1 = 105 kPa
New pressure of gas P2 = ?
New volume of gas V2 = 21L
Since pressure and volume are given while temperature is constant, apply the formula for Boyle's law
P1V1 = P2V2
105 kPa x 30L = P2 x 21L
3150 kPa L = P2 x 21L
P2 = 3150 kPa L / 21 L
P2 = 150 kPa
Thus, 150 kPa of pressure is required to compress the gas
Lead reacts very slowly with dilute hydrochloric acid to give lead chloride<span> and </span>hydrogen<span> gas. </span>
<span>lead + hydrochloric acid —> lead chloride + hydrogen
Pb(s) + 2HCl(aq) —> PbCl2(aq) + H2(g)</span>
<span>Lead reacts very slowly with dilute sulphuric acid to give </span>lead sulphate<span> and </span>hydrogen<span> gas. </span>
<span>lead + sulphuric acid —> lead sulphate + hydrogen
Pb(s) + H2SO4 (aq) —> PbSO4(aq) + H2(g)</span>
<span>Lead reacts very slowly with dilute nitric acid to give </span>lead nitrate<span> and </span>hydrogen<span> gas. </span>
<span>lead + nitric acid —> lead nitrate + hydrogen
Fe(s) + 2HNO3(aq) —> Fe(NO3)2(aq) + H2(g)</span><span> </span>