Answer:
A) remove germs from the blood
Explanation:
cause the rest are the skeletal system function
<span>Na2CO3 (aq) + CaCl2H4O2 (aq) = CaCO3 (s) + 2 NaCl (aq) + 2 H2O (l)</span>
Answer:
(a) Between methanol (CH₃OH) and glycerol (C₃H₅(OH)₃), the substance with the higher surface tension is glycerol (C₃H₅(OH)₃)
(b) Between tetrabromomethane (CBr₄) and chloroform (CHCl₃), the substance with the higher surface tension is chloroform (CHCl₃)
Explanation:
The surface tension of these substances at 20 °C given in mN/m, is as follows:
The surface tension of Methanol is 22.70
The surface tension of Tetrabromomethane is 26.95
The surface tension of Glycerol is 64.00
The surface tension of Chloroform is 27.50
(a) Between methanol (CH₃OH) and glycerol (C₃H₅(OH)₃), the substance with the higher surface tension is glycerol (C₃H₅(OH)₃)
(b) Between tetrabromomethane (CBr₄) and chloroform (CHCl₃), the substance with the higher surface tension is chloroform (CHCl₃)
Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.
