Answer:
Explanation:
The first part of this question is simply asking us to convert the speed from miles per hour to meters per second:
choice C.
The next part wants us to use the equation for acceleration and find the acceleration:
where v is final velocity, v0 is initial velocity, and t is time in seconds (which was one of the reasons we had to convert the initial velocity from 60.0 mph to m/s):
and
a = 10.7 m/s/s, choice B.
By
vector addition.
In fact, velocity is a vector, with a magnitude intensity, a direction and a verse, so we can't simply do an algebraic sum of the two (or more velocities).
First we need to decompose each velocity on both x- and y-axis (if we are on a 2D-plane), then we should do the algebraic sum of all the components on the x- axis and of all the components on the y-axis, to find the resultants on x- and y-axis. And finally, the magnitude of the resultant will be given by

where Rx and Rx are the resultants on x- and y-axis. The direction of the resultant will be given by

where

is its direction with respect to the x-axis.
Answer:
<u>Amplitude - remains the same</u>
<u>Frequency - increases</u>
<u>Period - decreases</u>
<u>Velocity - remains the same.</u>
<u />
Explanation:
The amplitude of the wave remains the same since you are not changing the distance your hand moves and the amplitude of the wave depends on how much distance your hand covers while moving.
The frequency of your wave increases since now you are moving your hand more number of times in the same period i.e. your hand is moving faster in one second. So, the frequency of your wave increases.
The period is the time taken by the wave to travel a certain distance. Since your hand is now moving faster, the wave will travel faster and will take less time to cover the same distance hence, we can say that its period will decrease.
The velocity of a wave depends on the medium in which it is travelling. Your wave was previously travelling in air and the new wave is also travelling in the same medium so the velocity of the wave remains unchanged.
So, I’m assuming that we’re treating light as a propagating wave.
Amplitude measures the amount of energy transported by a wave, thus amplitude squared is directly proportional to the light’s energy. The higher the amplitude, the higher the energy.
Energy is also directly proportional to the frequency of a wave, the higher the frequency, the higher the energy.
I took my second answer from the formula below:
E=cf
Answer:
3 up 1 across is the answer
Explanation:
Step one: find the Y intercept( Where the line cuts the y-axis)
X = 0
Y = 3(0) (p.s cross out the (o)
y = 2
Step 2: find the gradient (slope of the line)
rise = 3
------ ---
Run 1