Aaron's car is moving at speed of 30 m/s
His reaction time is given as 0.7 s
but when he is tired the reaction time is doubled
Now we need to find the distance covered by his car when he is tired during the time when he react to apply brakes
So here since during this time speed is given as constant so we can say that distance covered can be product of speed and time
So here we can use



So the car will move to 42 m during the time when he apply brakes
Answer: 2 seconds
Explanation:
Given that,
Time (T) = ?
Charge (Q) = 4 coulombs
current (I) = 2 Amps
Since charge depends on the amount of current flowing through the wire in a given time, hence
Charge = Current x Time
Q = IT
4 coulombs = 2 Amps x Time
Time = 4 coulombs / 2 Amps
Time = 2 seconds
Thus, it takes 2 seconds for the current to flow through the wire
Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion.Displacement<span> is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.
</span>To calculate displacement<span>, simply draw a vector from your starting point to your final position and solve for the length of this line. If your starting and ending position are the same, like your circular 5K route, then your </span>displacement<span> is 0. In physics, </span>displacement<span> is represented by Δs.
For me to solve this I would need to know the time, but I can give you a handy displacement calculator I used that helped me.
https://www.easycalculation.com/physics/classical-physics/constant-acc-displacement.php
Hope I helped.
</span>
Answer:
F in the definition of potential energy is the force exerted by the force field, e.g., gravity, spring force, etc. The potential energy U is equal to the work you must do against that force to move an object from the U=0 reference point to the position r.
Explanation:
Answer:
Uniform Circular Motion
Explanation:
Uniform circular motion can be described as the motion of an object in a circle at a constant speed. As an object moves in a circle, it is constantly changing its direction. At all instances, the object is moving tangent to the circle.