1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
3 years ago
8

A 175-kg roller coaster car starts from rest at the top of an 18.0-m hill and rolls down the hill, then up a second hill that ha

s a height of 8.0 m. When the car reaches the top of the second hill, its speed is 11 m/s. Determine the work done by non-conservative forces on the car as it travels from the top of the first hill to the top of the second hill.
Physics
1 answer:
Anni [7]3 years ago
8 0

Answer:

The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.

Explanation:

By Principle of Energy Conservation and Work-Energy Theorem we present the equations that describe the situation of the roller coaster car on each top of the hill. Let consider that bottom has a height of zero meters.

From top of the first hill to the bottom

m\cdot g \cdot h_{1} = \frac{1}{2}\cdot m\cdot v_{1}^{2} +W_{1, loss} (1)

From the bottom to the top of the second hill

\frac{1}{2}\cdot m\cdot v_{1}^{2} = m\cdot g \cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2}+W_{2,loss} (2)

Where:

m - Mass of the roller coaster car, in kilograms.

v_{1} - Speed of the roller coaster car at the bottom between the two hills, in meters per second.

g - Gravitational acceleration, in meters per square second.

h_{1} - Height of the first top of the hill with respect to the bottom, in meters.

W_{1, loss} - Work done by non-conservative forces on the car between the top of the first hill and the bottom, in joules.

v_{2} - Speed of the roller coaster car at the top of the second hill, in meters per seconds.

h_{2} - Height of the second top of the hill with respect to the bottom, in meters.

W_{2, loss} - Work done by non-conservative forces on the car bewteen the bottom between the two hills and the top of the second hill, in joules.

By using (1) and (2), we reduce the system of equation into a sole expression:

m\cdot g\cdot h_{1} = m\cdot g\cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2} + W_{loss} (3)

Where W_{loss} is the work done by non-conservative forces on the car from the top of the first hill to the top of the second hill, in joules.

If we know that m = 175\,kg, g = 9.807\,\frac{m}{s^{2}}, h_{1} = 18\,m, h_{2} = 8\,m and v_{2} = 11\,\frac{m}{s}, then the work done by non-conservative force is:

W_{loss} = m\cdot\left[ g\cdot \left(h_{1}-h_{2}\right)-\frac{1}{2}\cdot v_{2}^{2} \right]

W_{loss} = 6574.75\,J

The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.

You might be interested in
What occurs when two Stars collide into each other?
ddd [48]

Answer:

A stellar collision.

Explanation:

A stellar collision is the coming together of two stars caused by stellar dynamics within a star cluster, or by the orbital decay of a binary star due to stellar mass loss or gravitational radiation, or by other mechanisms not yet well understood.

5 0
3 years ago
Read 2 more answers
A hollow cast-iron cylinder 4m long, 300mm outer diameter, and thickness of metal 50mm is subjected to a central load on the top
Sveta_85 [38]

Here, the calculated Magnitude of the load P is 2945.2 kN, the Longitudinal strain produced is 0.0005 and the decrease in length is 2 mm.

Given,

Length, L = 4 m

Outer diameter, D = 300mm, D= 0.3 m

Thickness, t = 50 mm, t = 0.05 m

Stress produced, σ = 75000 kN/m²

Young's modulus for cast iron, E = 1.5 x 10⁸ kN/m²

Calculating the diameter of the cylinder,

Diameter of cylinder, d = (D) – (2t) = 0.3 –( 2 × 0.05)

d= 0.2 m

(i) Magnitude of the load P:

Using the relation, σ =P/A

P = σ × A = 75000 × π /4 (D² – d² )

P= 75000 × π/4 (0.3² – 0.2²)

P= 75000 × π/4 (0.09 – 0.04)

P = 2945.2 kN

Hence, Magnitude of the load P is 2945.2 kN.

(ii) Longitudinal strain produced, e :

Using the relation, Strain, (e) = stress/E

e= 75000/(1.5 x 10⁸)= 0.0005

Hence, the Longitudinal strain produced is 0.0005.

(iii)Total decrease in length, dL:

The total decrease in length can be calculated using the strain as the ratio of change in length to the original length is known as Strain.

Strain = change in length/original length

e= dL/L

0.0005 = dL/4

dL = 0.0005 × 4m = 0.002m=2mm

Hence,the decrease in length is 2 mm.

Learn more about Elasticity here:

brainly.com/question/15230910

#SPJ10

5 0
2 years ago
A bumper cart has a mass of 200 kg and has a protective bumper around it that behaves like a spring. The spring constant is 5000
34kurt
Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:

KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J

Part B:
Now you can use Hooke’s law to find the force:

F = kx
F = (5000)(0.2)
F = 1000 N
4 0
3 years ago
Every few hundred years most of the planets line up on the same side of the Sun.(Figure 1)Calculate the total force on the Earth
mylen [45]

Answer: 3.7 \times 10^{-4} N

Explanation:

The gravitational pull between two object is given by:

F = G\frac{Mm}{r^2}

Where M and m are the masses of the object, r is the distance between the masses and G = 6.67× 10⁻¹¹ m³kg⁻¹ s⁻² is the gravitational constant.

We have to calculate the net force on Earth due to Venus, Jupiter and Saturn when they are in one line. It means when they are the closest distance.

F_{net] = G\frac{M_eM_v}{r_v^2}+G\frac{M_eM_j}{r_j^2}+G\frac{M_eM_s}{r_s^2}

Mass of Earth, Me = 5.98 × 10²⁴ kg

Mass of Venus, Mv = 0.815 Me

Mass of Jupiter, Mj = 318 Me

Mass of Saturn, Ms = 95.1 Me

closest distance between Earth and Venus, rv = 38 × 10⁶ km = 0.25 AU

closest distance between Jupiter and Earth, rj = 588 × 10⁶ km = 3.93 AU

closest distance between Earth and Saturn, rs = 1.2 × 10⁹ km = 8.0 AU

where 1 AU = 1.5 × 10¹¹ m

Inserting the values:

F_{net} = G\frac{M_e\times 0.815 M_e}{(0.25AU)^2}+G\frac{M_e\times 318 M_e}{(3.93AU)^2}+G\frac{M_e\times 95.1 M_e}{(8.0AU)^2}\\ \Rightarrow F_{net} = \frac{(GM_e^2)}{(1AU)^2}(\frac{0.815}{0.25^2}+\frac{318}{3.93^2}+\frac{95.1}{8.0^2})=\frac{6.67\times 10^{-11} \times (5.98\times 10^{24})^2}{(1.5\times 10^{11})^2}(35.1) = 3.7 \times 10^{-4} N

4 0
3 years ago
Read 2 more answers
An insulated beaker with negligible mass contains 0.250 kg of water at 75.0C. How many kilograms of ice at -20.0C must be droppe
kkurt [141]

Answer:

The amount of kilograms of ice at -20.0°C that must be dropped into the water to make the final temperature of the system 40.0°C = 0.0674 kg

Explanation:

Heat gained by ice in taking the total temperature to 40°C = Heat lost by the water

Total Heat gained by ice = Heat used by ice to move from -20°C to 0°C + Heat used to melt at 0°C + Heat used to reach 40°C from 0°C

To do this, we require the specific heat capacity of ice, latent heat of ice and the specific heat capacity of water. All will be obtained from literature.

Specific heat capacity of ice = Cᵢ = 2108 J/kg.°C

Latent heat of ice = L = 334000 J/kg

Specific heat capacity of water = C = 4186 J/kg.°C

Heat gained by ice in taking the total temperature to 40°C = mCᵢ ΔT + mL + mC ΔT = m(2108)(0 - (-20)) + m(334000) + m(4186)(40 - 0) = 42160m + 334000m + 167440m = 543600 m

Heat lost by water = mC ΔT = 0.25 (4186)(75 - 40) = 36627.5 J

543600 m = 36627.5

m = 0.0674 kg = 67.4 g of ice.

3 0
3 years ago
Other questions:
  • Answer question number 78
    10·1 answer
  • Why do telescopes give modern astronomers an advantage over people in the past
    14·1 answer
  • Two construction cranes are each able to lift a maximum load of 20000 N to a height of 250 m. However, one crane can lift that l
    10·1 answer
  • How much work does the electric field do in moving a proton from a point with a potential of +130 v to a point where it is -70 v
    14·1 answer
  • Name four factors that affect local, regional climates?
    5·2 answers
  • The linear impulse delivered by the hit of a boxer is 202 N · s during the 0.244 s of contact. What is the magnitude of the aver
    12·1 answer
  • Observer A, who is at rest in the laboratory, is studying a particle that is moving through the laboratory at a speed of v=0.8c
    15·1 answer
  • The drawing shows a plot of the output emf of a generator as a function of time t. The coil of this device has a cross-sectional
    15·1 answer
  • An offshore oil platform houses a drill for drilling oil. The drill descends from the platform and enters the ocean. At the bott
    5·2 answers
  • What type of lens is a flat lens?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!