1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
2 years ago
8

A 175-kg roller coaster car starts from rest at the top of an 18.0-m hill and rolls down the hill, then up a second hill that ha

s a height of 8.0 m. When the car reaches the top of the second hill, its speed is 11 m/s. Determine the work done by non-conservative forces on the car as it travels from the top of the first hill to the top of the second hill.
Physics
1 answer:
Anni [7]2 years ago
8 0

Answer:

The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.

Explanation:

By Principle of Energy Conservation and Work-Energy Theorem we present the equations that describe the situation of the roller coaster car on each top of the hill. Let consider that bottom has a height of zero meters.

From top of the first hill to the bottom

m\cdot g \cdot h_{1} = \frac{1}{2}\cdot m\cdot v_{1}^{2} +W_{1, loss} (1)

From the bottom to the top of the second hill

\frac{1}{2}\cdot m\cdot v_{1}^{2} = m\cdot g \cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2}+W_{2,loss} (2)

Where:

m - Mass of the roller coaster car, in kilograms.

v_{1} - Speed of the roller coaster car at the bottom between the two hills, in meters per second.

g - Gravitational acceleration, in meters per square second.

h_{1} - Height of the first top of the hill with respect to the bottom, in meters.

W_{1, loss} - Work done by non-conservative forces on the car between the top of the first hill and the bottom, in joules.

v_{2} - Speed of the roller coaster car at the top of the second hill, in meters per seconds.

h_{2} - Height of the second top of the hill with respect to the bottom, in meters.

W_{2, loss} - Work done by non-conservative forces on the car bewteen the bottom between the two hills and the top of the second hill, in joules.

By using (1) and (2), we reduce the system of equation into a sole expression:

m\cdot g\cdot h_{1} = m\cdot g\cdot h_{2} + \frac{1}{2}\cdot m \cdot v_{2}^{2} + W_{loss} (3)

Where W_{loss} is the work done by non-conservative forces on the car from the top of the first hill to the top of the second hill, in joules.

If we know that m = 175\,kg, g = 9.807\,\frac{m}{s^{2}}, h_{1} = 18\,m, h_{2} = 8\,m and v_{2} = 11\,\frac{m}{s}, then the work done by non-conservative force is:

W_{loss} = m\cdot\left[ g\cdot \left(h_{1}-h_{2}\right)-\frac{1}{2}\cdot v_{2}^{2} \right]

W_{loss} = 6574.75\,J

The work done by non-conservative forces on the car from the top of the first hill to the top of the second hill is 6574.75 joules.

You might be interested in
Problem: The frequency of an FM radio station is 89.3 MHz. Calculate its period. Part B: From the Library, select the general eq
vekshin1

Answer:

Time period, T=1.11\times 10^{-8}\ s

Explanation:

We have,

The frequency of an FM radio station is 89.3 MHz.

It is required to find the period of the wave.

The reciprocal of frequency is called time period of a wave. It can be given by :

T=\dfrac{1}{f}\\\\T=\dfrac{1}{89.3\times 10^{6}\ Hz}\\\\T=1.11\times 10^{-8}\ s

So, the period of the wave is 1.11\times 10^{-8}\ s.

5 0
2 years ago
Part A
7nadin3 [17]

Answer:

2.5 m/s²

Explanation:

Using the formula, v = u + at ( v = Final velocity; u = Initial velocity; t = Time; a = Acceleration)

25 = 0 + 10a

a = 25/10 = 2.5 m/s²

8 0
3 years ago
Describe the relationship between a moving objects mass and its kinetic energy
WINSTONCH [101]
KE = 1/2 mv^2 is the relationship betwee mass and kinetic energy
8 0
3 years ago
A ball is dropped from the top of a building.After 2 seconds, it’s velocity is measured to be 19.6 m/s. Calculate the accelerati
zlopas [31]

Answer:

acceleration, a = 9.8 m/s²

Explanation:

'A ball is dropped from the top of a building' indicates that the initial velocity of the ball is zero.

u = 0 m/s

After 2 seconds, velocity of the ball is 19.6 m/s.

t = 2s, v = 19.6 m/s

Using

v = u + at

19.6 = 0 + 2a

a = 9.8 m/s²

6 0
3 years ago
Read 2 more answers
How are scientists able to predict when and where the next eclipse will occur?
ahrayia [7]

Answer:

When the Earth and sun are perfectly lined up, then it will happen. They can tell when it's going to happen.

Explanation:

This is why it only happens in some places. Some days it's not sunny out, so it's not going to happen.

5 0
2 years ago
Other questions:
  • ______ is the average _____ energy of the molecules in a object
    11·1 answer
  • Calculate the acceleration of a car that is maintaining a constant velocity of 1m/s
    5·2 answers
  • What temperature has the same value in both the fahrenheit and kelvin scales?
    6·1 answer
  • What is systematic error​
    5·2 answers
  • two students are on a balcony 19.6 m above the street. one student throws a ball vertically downward at 14.7 m:ds. at the same i
    12·1 answer
  • !!PLEASE ANSWER ASAP!!
    12·2 answers
  • CO2<br> NaCl<br> HCl<br> These may all be classified as
    8·2 answers
  • What is the measurement of electrical pressure?
    14·1 answer
  • 6. A yo-yo with a mass of 0.5 kg is tied to a radius of 2 m and is spinning at 3 m/s. What
    5·1 answer
  • A 35 kg object has -450 kgm/s of momentum. Calculate its velocity.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!