1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irina1246 [14]
3 years ago
12

In this equation Fs=-kx, Fs means:

Physics
1 answer:
nydimaria [60]3 years ago
5 0

Answer:

C Restoring Force

Explanation:

Given data

Fs=-kx

According to Hokes Law, provided the elasticity of an elastic material is not exceeded the extension xis directly proportion to the applied force F

From the expression, F represent the Restoring Force in Newton

You might be interested in
Example of energy transfer from potential to kinetic and back
Alex_Xolod [135]

Swimmer and Divers. The Potential energy is transferred into Kinetic energy, and allows the diver to submerge into the water. The Kinetic energy then allows the diver to submerge and dive into the water. Potential energy however, is needed to allow the diver to get back out of the water after diving to get up and go and dive again, and then the Kinetic energy is transferred back to Potential energy to repeat the process.

Hope :) -Emilie Xo this is right and it helps! Xo

5 0
3 years ago
Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo
ZanzabumX [31]

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

3 0
3 years ago
A projectile has an initial horizontal velocity of 34.0 M/s at the edge of a roof top. Find the horizontal and vertical componen
Sveta_85 [38]

Answer:

v_x=34 m/s

v_y=53.9\ m/s

Explanation:

<u>Horizontal Launch</u>

When an object is thrown horizontally with a speed v from a height h, it describes a curved path ruled by gravity until it eventually hits the ground.

The horizontal component of the velocity is always constant because no acceleration acts in that direction, thus:

vx=v

The vertical component of the velocity changes in time because gravity makes the object fall at increasing speed given by:

v_y=g.t

The horizontal component of the velocity is always the same:

v_x=34 m/s

The vertical component at t=5.5 s is:

v_y=9.8*5.5=53.9

v_y=53.9\ m/s

8 0
3 years ago
HHHEEEEELLLPPPP!!!
SIZIF [17.4K]
The correct answer is the Sun.i hope that helped! if you have any questions or concerns about the answer i gave you please let me know!!
4 0
3 years ago
A rock at the top of a 30 meter cliff has a mass of 25 kg. Calculate the rock’s gravitational potential energy when dropped off
nalin [4]

Potential energy =

                     (mass) x (gravity) x (height above the reference level) .

Relative to the bottom of the cliff, the potential energy
at the top of the cliff is

                         (25kg) x (9.8 m/s²) x (30 meters)

                     =  (25 x 9.8 x 30)  kg-m²/s²

                     =        7,350 joules .

Kinetic energy = (1/2) x (mass) x (speed²)

The rock's kinetic energy at the bottom is
the same as its potential energy at the top.

                                        7,350 joules = (1/2) x (25 kg) x (speed²)

Divide each side
by 12.5kg :                7,350 joules/12.5 kg  =  speed²

                                 7,350 kg-m²/s² / 12.5kg  =  speed²

                                 (7,350 / 12.5)  m²/s²  =  speed²

                                      588 m²/s²  =  speed²
Take the square root
of each side:            
                                   Speed = √(588 m²/s²) 

                                             =  24.248... m/s       (rounded)

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following is a chemical equation that accurately represents what happens when a sulfur and oxygen are produced from
    5·1 answer
  • A charge Q is transferred from an initially uncharged plastic ball to an identical ball 17 cm away. The force of attraction is t
    7·1 answer
  • While a utility patent protects the way an invention is used and​ works, a​ ___ patent protects the way it looks?
    8·1 answer
  • What is the speed of a wave that has a frequency of 45hz and wavelength of 0.1 meters?
    7·1 answer
  • Car A hits car B (initially at rest and of equal mass) frombehind while going 35 m/s. Immediately after the collision, car Bmove
    7·1 answer
  • What is 7.4×10 to the second power​
    11·1 answer
  • In an electricity demonstration at the Deutsches Museum in Munich, Germany, a person sits inside a metal sphere of radius 0.90 m
    7·1 answer
  • In transistor emitter current is equal to which current?
    11·1 answer
  • A bungee jumper of mass 75kg is attached to a bungee cord of length L=35m. She walks off a platform (with no initial speed), reac
    8·1 answer
  • The Earth's escape speed (the speed you need to get away forever) is about 40,000 kilometers per hour. Escape speed depends on t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!