Hey there!
Your answer is D. salt water
A mixture has more than one substance.
Salt water is made up of multiple different substances, salt (NaCl) and water (H₂O).
Carbon dioxide (CO₂), water vapor (H₂O), and oxygen gas (O₂) are each just one substance.
Hope this helps!
What occurs is they neutralize both acid and base characteristics/features, usually producing a salt.
Hope this shells!
Answer:
The Photosynthesis process
Explanation:
Plants, algae, and some other organisms can transform the sunlight energy into chemical energy. The photosynthesis process occur thanks to the chloroplasts. The chloroplast is an organelle found in all green plants. Inside of the chloroplast you can find the thylakoids which are arranged in stacks named grana, they have membranes with chloropyll a photosynthetic pigment, also you can find the photosystems, they are functional and structural units of protein complexes. The thylakoids capture the light and allow the reactions to transform CO2. The set of reactions that occurs in the chloroplasts are known as the Calvin cycle.
The general equation of photosynthesis is:

6 CO2 + 6 H2O + Energy -> C6H12O6 + 6 O2
Carbon Dioxide + water + Light -> Glucose (sugar) + Oxygen
After, this glucose is transformed into pyruvate, and it allowed the release of denosine triphosphate (ATP) by cellular respiration. The ATP is an organic chemical that is requires for the cell to perform any process (any kind or work).
Answer:
The density of the ideal gas is directly proportional to its molar mass.
Explanation:
Density is a scalar quantity that is denoted by the symbol ρ (rho). It is defined as the ratio of the mass (m) of the given sample and the total volume (V) of the sample.
......equation (1)
According to the ideal gas law for ideal gas:
......equation (2)
Here, V is the volume of gas, P is the pressure of gas, T is the absolute temperature, R is Gas constant and n is the number of moles of gas
As we know,
The number of moles: 
where m is the given mass of gas and M is the molar mass of the gas
So equation (2) can be written as:

⇒ 
⇒
......equation (3)
Now from equation (1) and (3), we get
⇒ Density of an ideal gas:
⇒ <em>Density of an ideal gas: ρ ∝ molar mass of gas: M</em>
<u>Therefore, the density of the ideal gas is directly proportional to its molar mass. </u>