Answer:
B.
It will be greater than 10 J.
Explanation:
The total mechanical energy of an object is the sum of its potential energy (PE) and its kinetic energy (KE):
E = PE + KE
According to the law of conservation of energy, when there are no frictional forces on an object, its mechanical energy is conserved.
The potential energy PE is the energy due to the position of the object: the highest the object above the ground, the highest its PE.
The kinetic energy KE is the energy due to the motion of the object: the highest its speed, the largest its KE.
Here at the beginning, when it is at the top of the roof, the baseball has:
PE = 120 J
KE = 10 J
So the total energy is
E = 120 + 10 = 130 J
As the ball falls down, its potential energy decreases, since its height decreases; as a result, since the total energy must remain constant, its kinetic energy increases (as its speed increases).
Therefore, when the ball reaches the ground, its kinetic energy must be greater than 10 J.
Answer:
Explanation:
Increases. The force of gravity is distance dependent. Therefore, a smaller 'r' value will result in a larger force. Net force is proportional to the acceleration, so the planet will increase its speed.
The fatal current is 51 mA = 0.051 Ampere.
The resistance is 2,050Ω .
Voltage = (current) x (resistance)
= (0.051 Ampere) x (2,050 Ω) = 104.6 volts .
==================
This is what the arithmetic says IF the information in the question
is correct.
I don't know how true this is, and I certainly don't plan to test it,
but I have read that a current as small as 15 mA through the
heart can be fatal, not 51 mA .
If 15 mA can do it, and the sweaty electrician's resistance is
really 2,050 Ω, then the fatal voltage could be as little as 31 volts !
The voltage at the wall-outlets in your house is 120 volts in the USA !
THAT's why you don't want to stick paper clips or a screwdriver into
outlets, and why you want to cover unused outlets with plastic plugs
if there are babies crawling around.
Answer:
B
Explanation:
While answer C may sound correct, Answer B is makes more sense. We know you cant use High-beam lights when u cant see ongoing traffic because it could affect the other driver coming across from you. Its good to use it when legal and safe, but in that term I still don't believe there's no reason for HIGH-beamed. That's this leaves B, when you are on u lighted streets.