Answer:
Therefore the ratio of diameter of the copper to that of the tungsten is

Explanation:
Resistance: Resistance is defined to the ratio of voltage to the electricity.
The resistance of a wire is
- directly proportional to its length i.e

- inversely proportional to its cross section area i.e

Therefore

ρ is the resistivity.
The unit of resistance is ohm (Ω).
The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m
The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m
For copper:


......(1)
Again for tungsten:

........(2)
Given that
and 
Dividing the equation (1) and (2)

[since
and
]



Therefore the ratio of diameter of the copper to that of the tungsten is

Answer:
10 seconds
Explanation:
x = x₀ + v₀ t + ½ at²
250 = 0 + (0) t + ½ (5) t²
250 = 2.5 t²
t² = 100
t = 10
It takes 10 seconds to land from a height of 250 ft.
Answer:
C. both forces have the same magnitude
Explanation:
Here the action force is equal to the reaction force in accordance with the Newton's third law of motion.
Also when we apply the conservation of momentum so that the momentum bullet and the momentum of the gun are equal and according to the second law of motion by Newton, we have force equal to the rate of change in momentum.
We have the equation for momentum as:

Newton's second law is Mathematically given as:

Momentum is constant and the reaction time is equal, so the force exerted will also be equal.
Answer:
<em>10.90km</em>
Explanation:
Magnitude of the total displacement is expressed using the equation
d = √dx²+dy²
dx is the horizontal component of the displacement
dy is the vertical component of the displacement
dy = -6.7sin27°
dy = -6.7(0.4539)
dy = -3.042
For the horizontal component of the displacement
dx = -4.5 - 6.7cos27
dx = -4.5 -5.9697
dx = -10.4697
Get the magnitude of the bicyclist's total displacement
Recall that: d = √dx²+dy²
d = √(-3.042)²+(-10.4697)²
d = √9.2538+109.6146
d = √118.8684
<em>d = 10.90km</em>
<em>Hence the magnitude of the bicyclist's total displacement is 10.90km</em>
<em></em>