Answer:
Three types of electromagnetic waves, used to transmit various information
Explanation:
A form of energy waves having both electric & magnetic fields are Electromagnetic waves. Three types -
Radio Waves - These have longest wavelengths & transmit data through radio, satellites, radar .
Micro Waves - These have shorter wavelengths & are used in cooking appliances & predicting weather.
X rays - These have more short wavelength and can penerate soft tissues like skin & muscle, hence are used for medical examining
Answer:
Option C
Maximum potential energy is at point R.
Explanation:
Potential energy is a product of mass, acceleration due to gravity and height ie
PE=mgh where PE is the potential energy, m is mass of an object, g is acceleration due to gravity whose value is normally taken as 9.81 and h is height. Since at point R we have the maximum height, the potential energy will be highest at this point.
If I am to understand this question correctly this is what asks you:
If a person is riding a motorized tricycle how much work do they do?
You may ask yourself, why did I only use part of the question. Simple, the rest is not relevant to what is being asked. The weight, speed, and distance wont affect the person riding any <em><u>motorized vehicle</u></em> other than the time it takes to get from one place to another.
So to answer this question I would say:
Not much, all they really have to do is to steer and set the motorized tricycle to cruise control. Just like any rode certified vehicle.
If you have any questions about my answer please let me know and I will be happy to clarify any misunderstandings. Thanks and have a great day!
Answer:
No
Explanation:
Cause a monster truck don
Answer:
17.6 N
Explanation:
The force exerted by the punter on the football is equal to the rate of change of momentum of the football:

where
is the change in momentum of the football
is the time elapsed
The change in momentum can be written as

where
m = 0.55 kg is the mass of the football
u = 0 is the initial velocity (the ball starts from rest)
v = 8.0 m/s is the final velocity
Combining the two equations and substituting the values, we find the force exerted on the ball:
