Answer:
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
Explanation:
This is an angular kinematic exercise the equation for the angular position
the particle A
θ = θ₀ + ω₀ t + ½ α t²
They say for the particle B
w₀B = ½ w₀
αB = 2 α
In addition, the particle begins at a time t_1 after particle A, in order to use the same timer, we must subtract this time from the initial
t´ = t - t_1
l
et's write the equation of particle B
θ = θ₀ + w₀B t´ + ½ αB t´2
replace
θ = θ₀ + ½ w₀ (t -t_1) + ½ 2α (t -t_1)²
θ = θ₀ + ½ w₀ (t -t_1) + α (t -t_1)²
Answer:
7/150
Explanation:
The following data were obtained from the question:
Object distance (u) = 75cm
Image distance (v) = 3.5cm
Magnification (M) =..?
Magnification is simply defined as:
Magnification (M) = Image distance (v)/ object distance (u)
M = v /u
With the above formula, we can obtain the magnification of the image as follow:
M = v/u
M = 3.5/75
M = 7/150
Therefore, the magnification of the image is 7/150.
Initial speed is less than final speed
Answer:

Explanation:
The vector that point from point P1 to point P2 its found simply by taking the vector at which point P2 its located and subtracting the vector at which point P1 its located:

So:



The current in each experiment increases with increase in the voltage. Similarly, the association between resistance and the current in a circuit shows that increase in the resistance shows a reduction in the current, vice versa.
Ohm's Law states that the voltage across an electric conductor is directly proportional to the current(I) passing through it provided the resistant is constant.
So;
V ∝ I
V = IR
where
The objective of this question want us to determine: How did the current change for each test provided that Avery uses a 1.5-volt battery, then she uses a 3-volt battery and lastly she uses a 9-volt battery, given that the resistance is constant through out the whole process.
In the first experiment;
In the second experiment;
In the third experiment;
Therefore, we can conclude that the current in each experiment increases with increase in the voltage. Similarly, the association between resistance and the current in a circuit shows that increase in the resistance shows a reduction in the current, vice versa.
Learn more about Ohm's Law here:
brainly.com/question/14296509