Answer:
The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
Sensible heat is the amount of heat that a body absorbs or releases without any changes in its physical state (phase change).
Between heat and temperature there is a direct proportional relationship. The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat and the mass of the body. So, the equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature.
In this case:
- c= 4.184

- m= 32 g
- ΔT= Tfinal - Tinitial= 22°C - 8°C= 14°C
Replacing:
Q= 32 g* 4.184
*14 °C
Solving:
Q= 1,874.432 J
<u><em>The amount of heat required to raise the temperature of a 32g sample of water from 8°C to 22°C is 1,874.432 J</em></u>
Answer:
Theoretical yield for CO₂ is 5.10g
Explanation:
Reaction: 2C₆H₆(l) + 15O₂(g) → 12CO₂(g) + 6H₂O(g)
We convert the mass of oxygen to moles:
4.64 g /32 g/mol = 0.145 moles of O₂
Let's find out the 100% yield reaction of CO₂ (theoretical yield)
Ratio is 15:12. So let's make this rule of three:
15 moles of O₂ can produce 12 moles of CO₂
Therefore 0.145 moles of oxygen will produce (0.145 . 12) /15 = 0.116 moles
We convert the moles to mass: 0.116 mol . 44 g / 1mol = 5.10 g
Answer: Option (b) is the correct answer.
Explanation:
The given chemical reaction shows that hydrogen cyanide acid has been added to water which results in the formation of hydronium ion and cyanide ion.
Also, when we add a base like sodium hydroxide (NaOH) to HCN then it will help in accepting a proton (
) from hydrogen cyanide. As a result, formation of
anion will be rapid and easy.
This will make the system not to do any extra work. So, amount of work done by system will decrease.
Thus, we can conclude that out of the given options, add solid NaOH to the reaction (assume no volume change) will decrease the amount of work the system could perform.
True would seem to be sufficient
I have no idea I’m sorry I’m doing a test and need to put a question