
Explanation:
Sodium hydroxide completely ionizes in water to produce sodium ions and hydroxide ions. Hydroxide ions are in excess and neutralize all acetic acid added by the following ionic equation:

The mixture would contain
if
undergoes no hydrolysis; the solution is of volume
after the mixing. The two species would thus be of concentration
and
, respectively.
Construct a RICE table for the hydrolysis of
under a basic aqueous environment (with a negligible hydronium concentration.)

The question supplied the <em>acid</em> dissociation constant
for acetic acid
; however, calculating the hydrolysis equilibrium taking place in this basic mixture requires the <em>base</em> dissociation constant
for its conjugate base,
. The following relationship relates the two quantities:

... where the water self-ionization constant
under standard conditions. Thus
. By the definition of
:
![[\text{HAc} (aq)] \cdot [\text{OH}^{-} (aq)] / [\text{Ac}^{-} (aq) ] = K_b = 10^{-pK_{b}}](https://tex.z-dn.net/?f=%20%5B%5Ctext%7BHAc%7D%20%28aq%29%5D%20%5Ccdot%20%5B%5Ctext%7BOH%7D%5E%7B-%7D%20%28aq%29%5D%20%2F%20%5B%5Ctext%7BAc%7D%5E%7B-%7D%20%28aq%29%20%5D%20%3D%20K_b%20%3D%20%2010%5E%7B-pK_%7Bb%7D%7D%20)


![[\text{OH}^{-}] = 0.30 +x \approx 0.30 \; \text{M}](https://tex.z-dn.net/?f=%20%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D%20%3D%200.30%20%2Bx%20%5Capprox%200.30%20%5C%3B%20%5Ctext%7BM%7D%20)
![pH = pK_{w} - pOH = 14 + \text{log}_{10}[\text{OH}^{-}] = 14 + \text{log}_{10}{0.30} = 13.5](https://tex.z-dn.net/?f=%20pH%20%3D%20pK_%7Bw%7D%20-%20pOH%20%3D%2014%20%2B%20%5Ctext%7Blog%7D_%7B10%7D%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D%20%3D%2014%20%2B%20%5Ctext%7Blog%7D_%7B10%7D%7B0.30%7D%20%3D%2013.5%20)
A sodium chloride is like most of the ionic compounds
existing here on earth in which they are composed of having a high melting
point and by this, if found in underground rock deposits, they are usually in a
form of solid.
Answer:
8.44 atm
Explanation:
From the question given above, the following data were obtained:
Initial volume (V₁) = 2.25 L
Initial temperature (T₁) = 350 K
Initial pressure (P₁) = 1.75 atm
Final volume (V₂) = 1 L
Final temperature (T₂) = 750 K
Final pressure (P₂) =?
The final pressure of the gas can be obtained as illustrated below:
P₁V₁/T₁ = P₂V₂/T₂
1.75 × 2.25 / 350 = P₂ × 1 / 750
3.9375 / 350 = P₂ / 750
Cross multiply
350 × P₂ = 3.9375 × 750
350 × P₂ = 2953.125
Divide both side by 350
P₂ = 2953.125 / 350
P₂ = 8.44 atm
Thus, the final pressure of the gas is 8.44 atm.
Answer:
The given statement is true.
Explanation:
The given statement is true.
As per an estimate, to convert graphite into diamond nearly 1 billion to 3.3 billion years of time is required.
Graphite converts into diamond when high-pressure is applied deep in the earth core.
Answer: Heat of vaporization is 41094 Joules
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:

where,
= initial pressure at 429 K = 760 torr
= final pressure at 415 K = 515 torr
= enthalpy of vaporisation = ?
R = gas constant = 8.314 J/mole.K
= initial temperature = 429 K
= final temperature = 515 K
Now put all the given values in this formula, we get
![\log (\frac{515}{760}=\frac{\Delta H}{2.303\times 8.314J/mole.K}[\frac{1}{429K}-\frac{1}{415K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B515%7D%7B760%7D%3D%5Cfrac%7B%5CDelta%20H%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B429K%7D-%5Cfrac%7B1%7D%7B415K%7D%5D)

Thus the heat of vaporization is 41094 Joules