The compound : C₄₀H₄₄N₄O
<h3>Further explanation</h3>
The empirical formula is the smallest comparison of atoms of compound =mole ratio of the components
The principle of determining empirical formula
• Determine the mass ratio of the constituent elements of the compound.
• Determine the mole ratio by dividing the percentage by the atomic mass
The mol ratio of composition : C : H : N : O

Answer:
Decreases
Explanation:
F = GM1M2/R²
please mark me brainliest and 5 star
Volume of the tank is 5.5 litres.
Explanation:
mass of the CO2 is given 8.6 grams
Pressure of the gas is 89 Kilopascal which is 0.8762 atm
Temperature of the gas is 29 degrees ( 0 degrees +273.5= K) so (29+273)
R = gas constant 0.0821 liter atmosphere per kelvin)
FROM THE IDEAL GAS LAW
PV=nRT ( P Pressure, V Volume, n is number of moles of gas, R gas constant, Temperature in Kelvin)
no of moles = mass/atomic mass
= 8.6/44
= 0.195 moles
now putting the values in equation
V=nRT/P
= 0.195*0.0821*302/ 0.8762
= 5.5 litres.
As the carbon dioxide gas occupies the volume os the tank hence volume of tank is 5.5 litres.
Use the Heat formula for both problems.
q=m*c*∆t
Where
q= heat in Joules
m= mass in grams
c= specific heat which is a constant 4.18
∆t= change in temperature
Answer:
C8H20P4F8
Explanation:
Molecular formula is based off a ratio of the molecular formula's molar mass divided by the empirical formula's molar mass.
The molar mass of the empirical formula C2H5PF2 is 98.02g. We find this by adding the molar masses of all elements in the formula, multiplied by their subscripts.
2(12.01) + 5(1.01) + 30.97 + 2(18.99) = 98.02
We then divide the molecular molar mass by the empirical molar mass.
392.16/98.02 = 4
This tells us that the molecular formula has 4 times the mass of the empirical formula. Because mass comes from the elements in the formula, we multiply all the subscripts by 4 to get the molecular formula.
2x4 = 8
5x4 = 20
1x4 = 4
2x4 = 8
So the molecular formula is C8H20P4F8