Any fracture or system of fractures along which Earth moves is known as a fault.
Answer: b. fault.
Pacemaker........................................................
Answer:
The mass of the block m is:
Explanation:
Let's analyze the block by parts
For the block M
(1)
Where:
- T is the tension
- W(x) is the component of the weight in the x-direction
- F(f) is the friction force
For the block m
(2)
Now, let's combines equation (1) and (2):
Finally, let's solve it for block m.
I hope it helps you!
Answer:
The first overtone frequency is 100 Hz.
Solution:
According to the question:
Length of pipe, l = 1.75 m
Speed of sound in air, v_{sa} = 350 m/s
Frequency of first overtone,
is given by:


Since, the frequency, as clear from the formula depends only on the speed
and the length. It is independent of the air temperature.
Thus there will be no effect of air temperature on the frequency.
Answer:
x(t)=0.337sin((5.929t)
Explanation:
A frictionless spring with a 3-kg mass can be held stretched 1.6 meters beyond its natural length by a force of 90 newtons. If the spring begins at its equilibrium position, but a push gives it an initial velocity of 2 m/sec, find the position of the mass after t seconds.
Solution. Let x(t) denote the position of the mass at time t. Then x satisfies the differential equation
Definition of parameters
m=mass 3kg
k=force constant
e=extension ,m
ω =angular frequency
k=90/1.6=56.25N/m
ω^2=k/m= 56.25/1.6
ω^2=35.15625
ω=5.929
General solution will be
differentiating x(t)
dx(t)=-5.929c1sin(5.929t)+5.929c2cos(5.929t)
when x(0)=0, gives c1=0
dx(t0)=2m/s gives c2=0.337
Therefore, the position of the mass after t seconds is
x(t)=0.337sin((5.929t)