The one that is not an option of the 3 technology bets made are Digital core and Design Thinking.
<h3>What are the 3 technology bets Genpact produced?</h3>
The digital technologies made are known to be able to create value through the accelerating processes and also by automating them.
The technology bets Genpact are:
- Artificial Intelligence.
- Augmented Intelligence.
- Customer Experience.
- Digital Transformation and AI Consulting.
- Intelligent Automation.
Learn more about technology from
brainly.com/question/25110079
Answer:
Time taken by the
diameter droplet is 60 ns
Solution:
As per the question:
Diameter of the droplet, d = 1 mm = 0.001 m
Radius of the droplet, R = 0.0005 m
Time taken for complete evaporation, t = 1 min = 60 s
Diameter of the smaller droplet, d' = 
Diameter of the smaller droplet, R' = 
Now,
Volume of the droplet, V = 
Volume of the smaller droplet, V' = 
Volume of the droplet ∝ Time taken for complete evaporation
Thus

where
t' = taken taken by smaller droplet


t' = 
Answer:
1. High friction
2. High extrusion temperature
Explanation:
Surface cracking on extruded products are defects or breakage on the surface of the extruded parts. Such cracks are inter granular.
Surface cracking defects arises from very high work piece temperature that develops cracks on the surface of the work piece. Surface cracking appears when the extrusion speed is very high, that results in high strain rates and generates heat.
Other factors include very high friction that contributes to surface cracking an d chilling of the surface of high temperature billets.
Answer:
The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C
Explanation:
The properties of water at 100°C and 1 atm are:
pL = 957.9 kg/m³
pV = 0.596 kg/m³
ΔHL = 2257 kJ/kg
CpL = 4.217 kJ/kg K
uL = 279x10⁻⁶Ns/m²
KL = 0.68 W/m K
σ = 58.9x10³N/m
When the water boils on the surface its heat flux is:

For copper-water, the properties are:
Cfg = 0.0128
The heat flux is:
qn = 0.9 * 18703.42 = 16833.078 W/m²

The tube surface temperature immediately after installation is:
Tinst = 100 + 20.4 = 120.4°C
For rough surfaces, Cfg = 0.0068. Using the same equation:
ΔT = 10.8°C
The tube surface temperature after prolonged service is:
Tprolo = 100 + 10.8 = 110.8°C